April  2019, 39(4): 1799-1819. doi: 10.3934/dcds.2019078

Linear response for Dirac observables of Anosov diffeomorphisms

1. 

École normale supérieure, Département de mathématiques et applications, Paris, 75005, France

2. 

Current affiliation, AgroParisTech, Département de sciences économiques, sociales et de gestion, Paris, 75015, France

Received  October 2017 Revised  September 2018 Published  January 2019

Fund Project: This work was conducted in 2017 as a MSc thesis at UPMC, under the direction of V. Baladi (CNRS/IMJ-PRG), whom the author thanks for her guidance and her useful remarks at all stages of this work. The author thanks P-A. Guihneuf (UMPC/IMJ-PRG) for his helpful comments. The author is also grateful to the reviewers for their insights on this paper throughout the drafting process

We consider a $ \mathcal{C}^3 $ family $ t\mapsto f_t $ of $ \mathcal{C}^4 $ Anosov diffeomorphisms on a compact Riemannian manifold $ M $. Denoting by $ \rho_t $ the SRB measure of $ f_t $, we prove that the map $ t\mapsto\int \theta d\rho_t $ is differentiable if $ \theta $ is of the form $ \theta(x) = h(x)\delta(g(x)-a) $, with $ \delta $ the Dirac distribution, $ g:M\rightarrow \mathbb{R} $ a $ \mathcal{C}^4 $ function, $ h:M\rightarrow\mathbb{C} $ a $ \mathcal{C}^3 $ function and $ a $ a regular value of $ g $. We also require a transversality condition, namely that the intersection of the support of $ h $ with the level set $ \{g(x) = a\} $ is foliated by 'admissible stable leaves'.

Citation: Matthieu Porte. Linear response for Dirac observables of Anosov diffeomorphisms. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 1799-1819. doi: 10.3934/dcds.2019078
References:
[1]

V. Baladi, Linear response, or else, Proceedings of the ICM - Seoul, 2014, 525–545. Google Scholar

[2]

V. Baladi, Positive Transfer Operators and Decay of Correlations, vol. 16 of Advanced Series in Nonlinear Dynamics, World Scientific Publishing Co., Inc., River Edge, NJ, 2000. doi: 10.1142/9789812813633. Google Scholar

[3]

V. Baladi, The quest for the ultimate anisotropic Banach space, J. Stat. Phys., 166 (2017), 525-557. doi: 10.1007/s10955-016-1663-0. Google Scholar

[4]

V. Baladi, Dynamical Zeta Functions and Dynamical Determinants for Hyperbolic Maps, Springer Ergebnisse Vol 68, 2018. doi: 10.1007/978-3-319-77661-3. Google Scholar

[5]

V. Baladi, T. Kuna and V. Lucarini, Linear and fractional response for the SRB measure of smooth hyperbolic attractors and discontinuous observables, Nonlinearity, 30 (2017), 1204-1220, URL http://stacks.iop.org/0951-7715/30/i=3/a=1204, Corrigendum Nonlinearity, 30 (2017), C4-C6. doi: 10.1088/1361-6544/aa5b13. Google Scholar

[6]

V. Baladi and M. Tsujii, Anisotropic Hölder and Sobolev spaces for hyperbolic diffeomorphisms, Ann. Inst. Fourier (Grenoble), 57 (2007), 127-154. doi: 10.5802/aif.2253. Google Scholar

[7]

S. Gouëzel and C. Liverani, Banach spaces adapted to Anosov systems, Ergodic Theory Dynam. Systems, 26 (2006), 189-217. doi: 10.1017/S0143385705000374. Google Scholar

[8]

H. Hennion, Sur un théorème spectral et son application aux noyaux lipchitziens, Proc. Amer. Math. Soc., 118 (1993), 627-634. doi: 10.2307/2160348. Google Scholar

[9]

T. Kato, Perturbation Theory for Linear Operators, Classics in Mathematics, Springer-Verlag, Berlin, 1995, Reprint of the 1980 edition. Google Scholar

[10]

A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, vol. 54 of Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, 1995, With a supplementary chapter by Katok and Leonardo Mendoza. doi: 10.1017/CBO9780511809187. Google Scholar

[11]

V. LucariniF. Ragone and F. Lunkeit, Predicting climate change using response theory: global averages and spatial patterns, J. Stat. Phys., 166 (2017), 1036-1064. doi: 10.1007/s10955-016-1506-z. Google Scholar

[12]

J. N. Mather, Characterization of Anosov diffeomorphisms, Nederl. Akad. Wetensch. Proc. Ser. A 71 Indag. Math., 30 (1968), 479-483. Google Scholar

[13]

R. D. Nussbaum, The radius of the essential spectrum, Duke Math. J., 37 (1970), 473-478, URL http://projecteuclid.org/euclid.dmj/1077379127. doi: 10.1215/S0012-7094-70-03759-2. Google Scholar

[14]

D. Ruelle, A measure associated with Axiom-A attractors, Amer. J. Math., 98 (1976), 619-654. doi: 10.2307/2373810. Google Scholar

[15]

D. Ruelle, A review of linear response theory for general differentiable dynamical systems, Nonlinearity, 22 (2009), 855-870. doi: 10.1088/0951-7715/22/4/009. Google Scholar

[16]

P. Walters, An Introduction to Ergodic Theory, vol. 79 of Graduate Texts in Mathematics, Springer-Verlag, New York-Berlin, 1982. Google Scholar

[17]

L.-S. Young, What are SRB measures, and which dynamical systems have them?, J. Statist. Phys., 108 (2002), 733-754. doi: 10.1023/A:1019762724717. Google Scholar

show all references

References:
[1]

V. Baladi, Linear response, or else, Proceedings of the ICM - Seoul, 2014, 525–545. Google Scholar

[2]

V. Baladi, Positive Transfer Operators and Decay of Correlations, vol. 16 of Advanced Series in Nonlinear Dynamics, World Scientific Publishing Co., Inc., River Edge, NJ, 2000. doi: 10.1142/9789812813633. Google Scholar

[3]

V. Baladi, The quest for the ultimate anisotropic Banach space, J. Stat. Phys., 166 (2017), 525-557. doi: 10.1007/s10955-016-1663-0. Google Scholar

[4]

V. Baladi, Dynamical Zeta Functions and Dynamical Determinants for Hyperbolic Maps, Springer Ergebnisse Vol 68, 2018. doi: 10.1007/978-3-319-77661-3. Google Scholar

[5]

V. Baladi, T. Kuna and V. Lucarini, Linear and fractional response for the SRB measure of smooth hyperbolic attractors and discontinuous observables, Nonlinearity, 30 (2017), 1204-1220, URL http://stacks.iop.org/0951-7715/30/i=3/a=1204, Corrigendum Nonlinearity, 30 (2017), C4-C6. doi: 10.1088/1361-6544/aa5b13. Google Scholar

[6]

V. Baladi and M. Tsujii, Anisotropic Hölder and Sobolev spaces for hyperbolic diffeomorphisms, Ann. Inst. Fourier (Grenoble), 57 (2007), 127-154. doi: 10.5802/aif.2253. Google Scholar

[7]

S. Gouëzel and C. Liverani, Banach spaces adapted to Anosov systems, Ergodic Theory Dynam. Systems, 26 (2006), 189-217. doi: 10.1017/S0143385705000374. Google Scholar

[8]

H. Hennion, Sur un théorème spectral et son application aux noyaux lipchitziens, Proc. Amer. Math. Soc., 118 (1993), 627-634. doi: 10.2307/2160348. Google Scholar

[9]

T. Kato, Perturbation Theory for Linear Operators, Classics in Mathematics, Springer-Verlag, Berlin, 1995, Reprint of the 1980 edition. Google Scholar

[10]

A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, vol. 54 of Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, 1995, With a supplementary chapter by Katok and Leonardo Mendoza. doi: 10.1017/CBO9780511809187. Google Scholar

[11]

V. LucariniF. Ragone and F. Lunkeit, Predicting climate change using response theory: global averages and spatial patterns, J. Stat. Phys., 166 (2017), 1036-1064. doi: 10.1007/s10955-016-1506-z. Google Scholar

[12]

J. N. Mather, Characterization of Anosov diffeomorphisms, Nederl. Akad. Wetensch. Proc. Ser. A 71 Indag. Math., 30 (1968), 479-483. Google Scholar

[13]

R. D. Nussbaum, The radius of the essential spectrum, Duke Math. J., 37 (1970), 473-478, URL http://projecteuclid.org/euclid.dmj/1077379127. doi: 10.1215/S0012-7094-70-03759-2. Google Scholar

[14]

D. Ruelle, A measure associated with Axiom-A attractors, Amer. J. Math., 98 (1976), 619-654. doi: 10.2307/2373810. Google Scholar

[15]

D. Ruelle, A review of linear response theory for general differentiable dynamical systems, Nonlinearity, 22 (2009), 855-870. doi: 10.1088/0951-7715/22/4/009. Google Scholar

[16]

P. Walters, An Introduction to Ergodic Theory, vol. 79 of Graduate Texts in Mathematics, Springer-Verlag, New York-Berlin, 1982. Google Scholar

[17]

L.-S. Young, What are SRB measures, and which dynamical systems have them?, J. Statist. Phys., 108 (2002), 733-754. doi: 10.1023/A:1019762724717. Google Scholar

Figure 1.  Behavior of the support of a Dirac observable on the stable manifold under the reverse dynamics. The two axes through the origin are the unstable and stable directions. The parallel lines are level sets for the function g(u, s) = u with the line passing through the origin being the level set {g = 0}. In the left side picture, the shaded area is the support of h. The right side picture is the image of the left side picture by f−1. Both pictures are in $\mathbb{R}^2$, each of the grid squares corresponds to a fundamental domain of the torus.
Figure 2.  Behavior of the support of a Dirac observable with g(x, y) = y − 0.4x under the reverse dynamics. The stable and unstable directions are the same as befor. Parallel lines are level sets for g. The line through the origin is the level set {g = 0}. The shaded area is the support of h. The right side picture is the image of the left side one by f−1.
Figure 3.  Behavior of the support of a Dirac observable with g(x, y) = x2 + y2 under the reverse dynamics. In the left side picture, circles are level sets of g and the middle circle is the level set {g = 0.42}. The shaded area is the support of h. Note that it excludes the region where the middle circle is tangent to the unstable direction. The right side picture is the image of the left side one by f−1.
[1]

Armin Lechleiter, Marcel Rennoch. Non-linear Tikhonov regularization in Banach spaces for inverse scattering from anisotropic penetrable media. Inverse Problems & Imaging, 2017, 11 (1) : 151-176. doi: 10.3934/ipi.2017008

[2]

João P. Almeida, Albert M. Fisher, Alberto Adrego Pinto, David A. Rand. Anosov diffeomorphisms. Conference Publications, 2013, 2013 (special) : 837-845. doi: 10.3934/proc.2013.2013.837

[3]

Viviane Baladi, Sébastien Gouëzel. Banach spaces for piecewise cone-hyperbolic maps. Journal of Modern Dynamics, 2010, 4 (1) : 91-137. doi: 10.3934/jmd.2010.4.91

[4]

Frédéric Naud. Birkhoff cones, symbolic dynamics and spectrum of transfer operators. Discrete & Continuous Dynamical Systems - A, 2004, 11 (2&3) : 581-598. doi: 10.3934/dcds.2004.11.581

[5]

Fatihcan M. Atay, Lavinia Roncoroni. Lumpability of linear evolution Equations in Banach spaces. Evolution Equations & Control Theory, 2017, 6 (1) : 15-34. doi: 10.3934/eect.2017002

[6]

Zeng Lian, Peidong Liu, Kening Lu. Existence of SRB measures for a class of partially hyperbolic attractors in banach spaces. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3905-3920. doi: 10.3934/dcds.2017164

[7]

Wolfgang Arendt, Patrick J. Rabier. Linear evolution operators on spaces of periodic functions. Communications on Pure & Applied Analysis, 2009, 8 (1) : 5-36. doi: 10.3934/cpaa.2009.8.5

[8]

Snir Ben Ovadia. Symbolic dynamics for non-uniformly hyperbolic diffeomorphisms of compact smooth manifolds. Journal of Modern Dynamics, 2018, 13: 43-113. doi: 10.3934/jmd.2018013

[9]

Felipe Alvarez, Juan Peypouquet. Asymptotic equivalence and Kobayashi-type estimates for nonautonomous monotone operators in Banach spaces. Discrete & Continuous Dynamical Systems - A, 2009, 25 (4) : 1109-1128. doi: 10.3934/dcds.2009.25.1109

[10]

Maria Carvalho. First homoclinic tangencies in the boundary of Anosov diffeomorphisms. Discrete & Continuous Dynamical Systems - A, 1998, 4 (4) : 765-782. doi: 10.3934/dcds.1998.4.765

[11]

Christian Bonatti, Nancy Guelman. Axiom A diffeomorphisms derived from Anosov flows. Journal of Modern Dynamics, 2010, 4 (1) : 1-63. doi: 10.3934/jmd.2010.4.1

[12]

Sonja Cox, Arnulf Jentzen, Ryan Kurniawan, Primož Pušnik. On the mild Itô formula in Banach spaces. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2217-2243. doi: 10.3934/dcdsb.2018232

[13]

Mustapha Mokhtar-Kharroubi. On permanent regimes for non-autonomous linear evolution equations in Banach spaces with applications to transport theory. Kinetic & Related Models, 2010, 3 (3) : 473-499. doi: 10.3934/krm.2010.3.473

[14]

Frédéric Naud. The Ruelle spectrum of generic transfer operators. Discrete & Continuous Dynamical Systems - A, 2012, 32 (7) : 2521-2531. doi: 10.3934/dcds.2012.32.2521

[15]

Mauricio Poletti. Stably positive Lyapunov exponents for symplectic linear cocycles over partially hyperbolic diffeomorphisms. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 5163-5188. doi: 10.3934/dcds.2018228

[16]

Goro Akagi, Mitsuharu Ôtani. Evolution equations and subdifferentials in Banach spaces. Conference Publications, 2003, 2003 (Special) : 11-20. doi: 10.3934/proc.2003.2003.11

[17]

Yuri Latushkin, Valerian Yurov. Stability estimates for semigroups on Banach spaces. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5203-5216. doi: 10.3934/dcds.2013.33.5203

[18]

H. Bercovici, V. Niţică. Cohomology of higher rank abelian Anosov actions for Banach algebra valued cocycles. Conference Publications, 2001, 2001 (Special) : 50-55. doi: 10.3934/proc.2001.2001.50

[19]

Andrey Gogolev. Smooth conjugacy of Anosov diffeomorphisms on higher-dimensional tori. Journal of Modern Dynamics, 2008, 2 (4) : 645-700. doi: 10.3934/jmd.2008.2.645

[20]

Andrey Gogolev, Misha Guysinsky. $C^1$-differentiable conjugacy of Anosov diffeomorphisms on three dimensional torus. Discrete & Continuous Dynamical Systems - A, 2008, 22 (1&2) : 183-200. doi: 10.3934/dcds.2008.22.183

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (31)
  • HTML views (43)
  • Cited by (0)

Other articles
by authors

[Back to Top]