April  2019, 39(4): 1821-1889. doi: 10.3934/dcds.2019079

A non-local problem for the Fokker-Planck equation related to the Becker-Döring model

1. 

University of Michigan, Department of Mathematics, Ann Arbor, MI 48109-1109, USA

2. 

Universität Bonn, Institut für Angewandte Mathematik, Endenicher Allee 60, 53129 Bonn, Germany

* Corresponding author

Received  November 2017 Revised  September 2018 Published  January 2019

This paper concerns a Fokker-Planck equation on the positive real line modeling nucleation and growth of clusters. The main feature of the equation is the dependence of the driving vector field and boundary condition on a non-local order parameter related to the excess mass of the system.

The first main result concerns the well-posedness and regularity of the Cauchy problem. The well-posedness is based on a fixed point argument, and the regularity on Schauder estimates. The first a priori estimates yield Hölder regularity of the non-local order parameter, which is improved by an iteration argument.

The asymptotic behavior of solutions depends on some order parameter $ \rho $ depending on the initial data. The system shows different behavior depending on a value $ \rho_s>0 $, determined from the potentials and diffusion coefficient. For $ \rho \leq \rho_s $, there exists an equilibrium solution $ c^ {{ \rm{eq}}} _{(\rho)} $. If $ \rho\le\rho_s $ the solution converges strongly to $ c^ {{ \rm{eq}}} _{(\rho)} $, while if $ \rho > \rho_s $ the solution converges weakly to $ c^ {{ \rm{eq}}} _{(\rho_s)} $. The excess $ \rho - \rho_s $ gets lost due to the formation of larger and larger clusters. In this regard, the model behaves similarly to the classical Becker-Döring equation.

The system possesses a free energy, strictly decreasing along the evolution, which establishes the long time behavior. In the subcritical case $ \rho<\rho_s $ the entropy method, based on suitable weighted logarithmic Sobolev inequalities and interpolation estimates, is used to obtain explicit convergence rates to the equilibrium solution.

The close connection of the presented model and the Becker-Döring model is outlined by a family of discrete Fokker-Planck type equations interpolating between both of them. This family of models possesses a gradient flow structure, emphasizing their commonality.

Citation: Joseph G. Conlon, André Schlichting. A non-local problem for the Fokker-Planck equation related to the Becker-Döring model. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 1821-1889. doi: 10.3934/dcds.2019079
References:
[1]

L. Ambrosio and G. Buttazzo, Weak lower semicontinuous envelope of functionals defined on a space of measures, Ann. Di Mat. Pura Ed Appl., (4) 150 (1988), 311–339. doi: 10.1007/BF01761473.  Google Scholar

[2]

C. Ané, S. Blachère, D. Chafai, P. Fougères, I. Gentil, F. Malrieu, C. Roberto and G. Scheffer, Sur Les Inégalités de Sobolev Logarithmiques, Panoramas et Synthèses, Société Mathématique de France, 2000.  Google Scholar

[3]

J. M. BallJ. Carr and O. Penrose, The Becker Döring cluster equations: Basic properties and asymptotic behavior of solutions, Comm. Math. Phys., 104 (1986), 657-692.  doi: 10.1007/BF01211070.  Google Scholar

[4]

F. Barthe and C. Roberto, Sobolev inequalities for probability measures on the real line, Stud. Math., 159 (2003), 481-497.  doi: 10.4064/sm159-3-9.  Google Scholar

[5]

F. Barthe and C. Roberto, Modified Logarithmic Sobolev Inequalities on $\mathbb{R}$, Potential Anal., 29 (2008), 167-193.  doi: 10.1007/s11118-008-9093-5.  Google Scholar

[6]

R. Becker and W. Döring, Kinetische Behandlung der Keimbildung in übersättigten Dämpfen, Ann. Der Phys., 24 (1935), 719-752.  doi: 10.1002/andp.19354160806.  Google Scholar

[7]

P. Billingsley, Convergence of Probability Measures, Wiley, 1968, New York-London.  Google Scholar

[8]

S. G. Bobkov and F. Götze, Exponential integrability and transportation cost related to logarithmic sobolev inequalities, J. Funct. Anal., 163 (1999), 1-28.  doi: 10.1006/jfan.1998.3326.  Google Scholar

[9]

V. I. Bogachev, Measure Theory, Springer Berlin Heidelberg, 2007. doi: 10.1007/978-3-540-34514-5.  Google Scholar

[10]

V. Bögelein, F. Duzaar and G. Mingione, The boundary regularity of non-linear parabolic systems Ⅰ, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 201–255. doi: 10.1016/j.anihpc.2009.09.003.  Google Scholar

[11]

F. Bolley and C. Villani, Weighted Csiszar-Kullback-Pinsker inequalities and applications to transportation inequalities, Fac. Des Sci. Toulouse, 14 (2005), 331-352.  doi: 10.5802/afst.1095.  Google Scholar

[12]

G. Buttazzo, Semicontinuity, Relaxation and Integral Representation in the Calculus of Variations, vol. 207 of Pitman Research Notes in Mathematics Series, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1989.  Google Scholar

[13]

J. A. CañizoA. Einav and B. Lods, Trend to equilibrium for the Becker-Döring equations: An analogue of Cercignani's conjecture, Anal. PDE., 10 (2017), 1663-1708.  doi: 10.2140/apde.2017.10.1663.  Google Scholar

[14]

J. A. Cañizo, A. Einav and B. Lods, Uniform moment propagation for the Becker-Döring equation, preprint, arXiv: 1706.03524. Google Scholar

[15]

J. Cañizo and B. Lods, Exponential convergence to equilibrium for subcritical solutions of the Becker-Döring equations, Journ. Diff. Eqns., 255 (2013), 905-950.  doi: 10.1016/j.jde.2013.04.031.  Google Scholar

[16]

J.-F. Collet, Some modelling issues in the theory of fragmentation-coagulation systems, Commun. Math. Sci., 2 (2004), 35-54.  doi: 10.4310/CMS.2004.v2.n5.a3.  Google Scholar

[17]

J.-F. ColletT. GoudonF. Poupaud and A. Vasseur, The Becker-Döring system and its Lifshitz-Slyozov limit, SIAM J. Appl. Math., 62 (2002), 1488-1500.  doi: 10.1137/S0036139900378852.  Google Scholar

[18]

J.-F. Collet and T. Goudon, On solutions of the Lifshitz-Slyozov model, Nonlinearity, 13 (2000), 1239-1262.  doi: 10.1088/0951-7715/13/4/314.  Google Scholar

[19]

J.-F. Collet and S. Hariz, A modified version of the Lifshitz-Slyozov model, Appl. Math. Lett., 12 (1999), 81-85.  doi: 10.1016/S0893-9659(2.40)00138-4.  Google Scholar

[20]

J. G. Conlon, On a diffusive version of the Lifschitz–Slyozov–Wagner equation, J. Nonlinear Sci., 20 (2010), 463-521.  doi: 10.1007/s00332-010-9065-y.  Google Scholar

[21]

J. Conlon and M. Guha, Stochastic Variational formulas for linear diffusion equations, Rev. Mat. Iberoam., 30 (2014), 581-666.  doi: 10.4171/RMI/794.  Google Scholar

[22]

D. DeBlassie and R. Smits, The influence of a power law drift on the exit time of Brownian motion from a half-line, Stochastic Process. Appl., 117 (2007), 629-654.  doi: 10.1016/j.spa.2006.09.009.  Google Scholar

[23]

S. EberleB. Niethammer and A. Schlichting, Gradient flow formulation and longtime behaviour of a constrained Fokker–Planck equation, Nonlinear Anal., 158 (2017), 142-167.  doi: 10.1016/j.na.2017.04.009.  Google Scholar

[24]

L. C. Evans, Weak Convergence Methods for Nonlinear Partial Differential Equations, Regional Conference Series in Mathematics, Vol 74, Amer. Math. Soc., 1990. doi: 10.1090/cbms/074.  Google Scholar

[25]

L. C. Evans, Partial Differential Equations, Amer. Math. Soc. Graduate Study in Mathematics, 19, 1998, AMS Providence.  Google Scholar

[26]

A. Figalli and N. Gigli, A new transportation distance between non-negative measures, with applications to gradients flows with Dirichlet boundary conditions, J. Math. Pures Appl., 94 (2010), 107-130.  doi: 10.1016/j.matpur.2009.11.005.  Google Scholar

[27]

M. Friedlin and A. D. Wentzell, Random Perturbations of Dynamical Systems, Grundlehren der Mathematischen Wissenschaften, 260, Springer, Heidelberg, 2012. doi: 10.1007/978-3-642-25847-3.  Google Scholar

[28]

A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall, Inc., 1964,347 pp.  Google Scholar

[29]

M. Fukushima, Y. Oshima and M. Takeda, Dirichlet Forms and Symmetric Markov Processes, Second revised and extended edition, Walter de Gruyter, Berlin, 2011.  Google Scholar

[30]

P.-E. Jabin and B. Niethammer, On the rate of convergence to equilibrium in the Becker–Döring equations, J. Differ. Equ., 191 (2003), 518–543. doi: 10.1016/S0022-0396(03)00021-4.  Google Scholar

[31]

P. Laurenccot and S. Mischler, From the Becker–Döring to the Lifshitz–Slyozov–Wagner equations, J. Stat. Phys., 106 (2002), 957-991.  doi: 10.1023/A:1014081619064.  Google Scholar

[32]

I. M. Lifshitz and V. V. Slyozov, The kinetics of precipitation from supersaturated solid solutions, J. Phys. Chem. Solids., 19 (1961), 35-50.  doi: 10.1016/0022-3697(61)90054-3.  Google Scholar

[33]

D. MatthesA. Jüngel and G. Toscani, Convex Sobolev inequalities derived from entropy dissipation, Arch. Rat. Mech. Anal., 199 (2011), 563-596.  doi: 10.1007/s00205-010-0331-9.  Google Scholar

[34]

J. Morales, A new family of transportation costs with applications to reaction-diffusion and parabolic equations with boundary conditions, J. Math. Pures Appl., (9) 112 (2018), 41–88. doi: 10.1016/j.matpur.2017.12.001.  Google Scholar

[35]

B. Muckenhoupt, Hardy's inequality with weights, Stud. Math., 44 (1972), 31-38.  doi: 10.4064/sm-44-1-31-38.  Google Scholar

[36]

B. Niethammer, On the evolution of large clusters in the Becker-Döring model, J. Nonlinear Sci., 13 (2003), 115-155.  doi: 10.1007/s00332-002-0535-8.  Google Scholar

[37]

B. Niethammer and R. L. Pego, On the initial value problem in the Lifschitz-Slyozov-Wagner theory of Ostwald ripening, SIAM J. Math. Anal., 31 (2000), 467-485.  doi: 10.1137/S0036141098338211.  Google Scholar

[38]

B. Niethammer and R. L. Pego, Well-posedness for measure transport in a family of nonlocal domain coarsening models, Indiana Univ. Math. J., 54 (2005), 499-530.  doi: 10.1512/iumj.2005.54.2598.  Google Scholar

[39]

O. Penrose, The Becker-Döring equations at large times and their connection with the LSW theory of coarsening, J. Stat. Phys., 89 (1997), 305-320.  doi: 10.1007/BF02770767.  Google Scholar

[40]

Y. V. Prokhorov, Convergence of random processes and limit theorems in probability theory, Teor. Veroyatnost. i Primenen, 1 (1956), 177-238.  doi: 10.1137/1101016.  Google Scholar

[41]

M. Protter and H. Weinberger, Maximum principles in Differential Equations, Springer-Verlag, New York, 1984. doi: 10.1007/978-1-4612-5282-5.  Google Scholar

[42] M. Reed and B. Simon, Methods of Modern Mathematical Physics Ⅰ. Functional Analysis, Academic Press, New York-London, 1972.  doi: 10.1088/0031-9112/23/12/045.  Google Scholar
[43]

O. S. Rothaus, Analytic inequalities, isoperimetric inequalities and logarithmic Sobolev inequalities, J. Funct. Anal., 64 (1985), 296-313.  doi: 10.1016/0022-1236(2.32)90079-5.  Google Scholar

[44]

A. Schlichting, Macroscopic Limit of the Becker-Döring Equation Via Gradient Flows, ESAIM: COCV, Forthcoming article, 2018. doi: 10.1051/cocv/2018011.  Google Scholar

[45]

S. R. S. Varadhan, Large Deviations and Applications, SIAM, Philadelphia, 1984. doi: 10.1137/1.9781611970241.  Google Scholar

[46]

J. J. L. Velázquez, The Becker-Döring equations and the Lifschitz-Slyozov theory of coarsening, J. Stat. Phys., 92 (1998), 195-236.  doi: 10.1023/A:1023099720145.  Google Scholar

[47]

C. Villani, Topics in Optimal Transportation, Graduate Studies in Mathematics, 58, Amer. Math. Soc., Providence R.I., 2003. doi: 10.1090/gsm/058.  Google Scholar

[48]

C. Wagner, Theorie der Alterung von Niederschlägen durch Umlösen (Ostwald-Reifung), Z. Elektrochem., 65 (1961), 581-591.   Google Scholar

[49] J. A. Walker, Dynamical Systems and Evolution Equations: Theory and Applications., Plenum Press, New York-London, 1980.  doi: 10.1007/978-1-4684-1036-5.  Google Scholar

show all references

References:
[1]

L. Ambrosio and G. Buttazzo, Weak lower semicontinuous envelope of functionals defined on a space of measures, Ann. Di Mat. Pura Ed Appl., (4) 150 (1988), 311–339. doi: 10.1007/BF01761473.  Google Scholar

[2]

C. Ané, S. Blachère, D. Chafai, P. Fougères, I. Gentil, F. Malrieu, C. Roberto and G. Scheffer, Sur Les Inégalités de Sobolev Logarithmiques, Panoramas et Synthèses, Société Mathématique de France, 2000.  Google Scholar

[3]

J. M. BallJ. Carr and O. Penrose, The Becker Döring cluster equations: Basic properties and asymptotic behavior of solutions, Comm. Math. Phys., 104 (1986), 657-692.  doi: 10.1007/BF01211070.  Google Scholar

[4]

F. Barthe and C. Roberto, Sobolev inequalities for probability measures on the real line, Stud. Math., 159 (2003), 481-497.  doi: 10.4064/sm159-3-9.  Google Scholar

[5]

F. Barthe and C. Roberto, Modified Logarithmic Sobolev Inequalities on $\mathbb{R}$, Potential Anal., 29 (2008), 167-193.  doi: 10.1007/s11118-008-9093-5.  Google Scholar

[6]

R. Becker and W. Döring, Kinetische Behandlung der Keimbildung in übersättigten Dämpfen, Ann. Der Phys., 24 (1935), 719-752.  doi: 10.1002/andp.19354160806.  Google Scholar

[7]

P. Billingsley, Convergence of Probability Measures, Wiley, 1968, New York-London.  Google Scholar

[8]

S. G. Bobkov and F. Götze, Exponential integrability and transportation cost related to logarithmic sobolev inequalities, J. Funct. Anal., 163 (1999), 1-28.  doi: 10.1006/jfan.1998.3326.  Google Scholar

[9]

V. I. Bogachev, Measure Theory, Springer Berlin Heidelberg, 2007. doi: 10.1007/978-3-540-34514-5.  Google Scholar

[10]

V. Bögelein, F. Duzaar and G. Mingione, The boundary regularity of non-linear parabolic systems Ⅰ, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 201–255. doi: 10.1016/j.anihpc.2009.09.003.  Google Scholar

[11]

F. Bolley and C. Villani, Weighted Csiszar-Kullback-Pinsker inequalities and applications to transportation inequalities, Fac. Des Sci. Toulouse, 14 (2005), 331-352.  doi: 10.5802/afst.1095.  Google Scholar

[12]

G. Buttazzo, Semicontinuity, Relaxation and Integral Representation in the Calculus of Variations, vol. 207 of Pitman Research Notes in Mathematics Series, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1989.  Google Scholar

[13]

J. A. CañizoA. Einav and B. Lods, Trend to equilibrium for the Becker-Döring equations: An analogue of Cercignani's conjecture, Anal. PDE., 10 (2017), 1663-1708.  doi: 10.2140/apde.2017.10.1663.  Google Scholar

[14]

J. A. Cañizo, A. Einav and B. Lods, Uniform moment propagation for the Becker-Döring equation, preprint, arXiv: 1706.03524. Google Scholar

[15]

J. Cañizo and B. Lods, Exponential convergence to equilibrium for subcritical solutions of the Becker-Döring equations, Journ. Diff. Eqns., 255 (2013), 905-950.  doi: 10.1016/j.jde.2013.04.031.  Google Scholar

[16]

J.-F. Collet, Some modelling issues in the theory of fragmentation-coagulation systems, Commun. Math. Sci., 2 (2004), 35-54.  doi: 10.4310/CMS.2004.v2.n5.a3.  Google Scholar

[17]

J.-F. ColletT. GoudonF. Poupaud and A. Vasseur, The Becker-Döring system and its Lifshitz-Slyozov limit, SIAM J. Appl. Math., 62 (2002), 1488-1500.  doi: 10.1137/S0036139900378852.  Google Scholar

[18]

J.-F. Collet and T. Goudon, On solutions of the Lifshitz-Slyozov model, Nonlinearity, 13 (2000), 1239-1262.  doi: 10.1088/0951-7715/13/4/314.  Google Scholar

[19]

J.-F. Collet and S. Hariz, A modified version of the Lifshitz-Slyozov model, Appl. Math. Lett., 12 (1999), 81-85.  doi: 10.1016/S0893-9659(2.40)00138-4.  Google Scholar

[20]

J. G. Conlon, On a diffusive version of the Lifschitz–Slyozov–Wagner equation, J. Nonlinear Sci., 20 (2010), 463-521.  doi: 10.1007/s00332-010-9065-y.  Google Scholar

[21]

J. Conlon and M. Guha, Stochastic Variational formulas for linear diffusion equations, Rev. Mat. Iberoam., 30 (2014), 581-666.  doi: 10.4171/RMI/794.  Google Scholar

[22]

D. DeBlassie and R. Smits, The influence of a power law drift on the exit time of Brownian motion from a half-line, Stochastic Process. Appl., 117 (2007), 629-654.  doi: 10.1016/j.spa.2006.09.009.  Google Scholar

[23]

S. EberleB. Niethammer and A. Schlichting, Gradient flow formulation and longtime behaviour of a constrained Fokker–Planck equation, Nonlinear Anal., 158 (2017), 142-167.  doi: 10.1016/j.na.2017.04.009.  Google Scholar

[24]

L. C. Evans, Weak Convergence Methods for Nonlinear Partial Differential Equations, Regional Conference Series in Mathematics, Vol 74, Amer. Math. Soc., 1990. doi: 10.1090/cbms/074.  Google Scholar

[25]

L. C. Evans, Partial Differential Equations, Amer. Math. Soc. Graduate Study in Mathematics, 19, 1998, AMS Providence.  Google Scholar

[26]

A. Figalli and N. Gigli, A new transportation distance between non-negative measures, with applications to gradients flows with Dirichlet boundary conditions, J. Math. Pures Appl., 94 (2010), 107-130.  doi: 10.1016/j.matpur.2009.11.005.  Google Scholar

[27]

M. Friedlin and A. D. Wentzell, Random Perturbations of Dynamical Systems, Grundlehren der Mathematischen Wissenschaften, 260, Springer, Heidelberg, 2012. doi: 10.1007/978-3-642-25847-3.  Google Scholar

[28]

A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall, Inc., 1964,347 pp.  Google Scholar

[29]

M. Fukushima, Y. Oshima and M. Takeda, Dirichlet Forms and Symmetric Markov Processes, Second revised and extended edition, Walter de Gruyter, Berlin, 2011.  Google Scholar

[30]

P.-E. Jabin and B. Niethammer, On the rate of convergence to equilibrium in the Becker–Döring equations, J. Differ. Equ., 191 (2003), 518–543. doi: 10.1016/S0022-0396(03)00021-4.  Google Scholar

[31]

P. Laurenccot and S. Mischler, From the Becker–Döring to the Lifshitz–Slyozov–Wagner equations, J. Stat. Phys., 106 (2002), 957-991.  doi: 10.1023/A:1014081619064.  Google Scholar

[32]

I. M. Lifshitz and V. V. Slyozov, The kinetics of precipitation from supersaturated solid solutions, J. Phys. Chem. Solids., 19 (1961), 35-50.  doi: 10.1016/0022-3697(61)90054-3.  Google Scholar

[33]

D. MatthesA. Jüngel and G. Toscani, Convex Sobolev inequalities derived from entropy dissipation, Arch. Rat. Mech. Anal., 199 (2011), 563-596.  doi: 10.1007/s00205-010-0331-9.  Google Scholar

[34]

J. Morales, A new family of transportation costs with applications to reaction-diffusion and parabolic equations with boundary conditions, J. Math. Pures Appl., (9) 112 (2018), 41–88. doi: 10.1016/j.matpur.2017.12.001.  Google Scholar

[35]

B. Muckenhoupt, Hardy's inequality with weights, Stud. Math., 44 (1972), 31-38.  doi: 10.4064/sm-44-1-31-38.  Google Scholar

[36]

B. Niethammer, On the evolution of large clusters in the Becker-Döring model, J. Nonlinear Sci., 13 (2003), 115-155.  doi: 10.1007/s00332-002-0535-8.  Google Scholar

[37]

B. Niethammer and R. L. Pego, On the initial value problem in the Lifschitz-Slyozov-Wagner theory of Ostwald ripening, SIAM J. Math. Anal., 31 (2000), 467-485.  doi: 10.1137/S0036141098338211.  Google Scholar

[38]

B. Niethammer and R. L. Pego, Well-posedness for measure transport in a family of nonlocal domain coarsening models, Indiana Univ. Math. J., 54 (2005), 499-530.  doi: 10.1512/iumj.2005.54.2598.  Google Scholar

[39]

O. Penrose, The Becker-Döring equations at large times and their connection with the LSW theory of coarsening, J. Stat. Phys., 89 (1997), 305-320.  doi: 10.1007/BF02770767.  Google Scholar

[40]

Y. V. Prokhorov, Convergence of random processes and limit theorems in probability theory, Teor. Veroyatnost. i Primenen, 1 (1956), 177-238.  doi: 10.1137/1101016.  Google Scholar

[41]

M. Protter and H. Weinberger, Maximum principles in Differential Equations, Springer-Verlag, New York, 1984. doi: 10.1007/978-1-4612-5282-5.  Google Scholar

[42] M. Reed and B. Simon, Methods of Modern Mathematical Physics Ⅰ. Functional Analysis, Academic Press, New York-London, 1972.  doi: 10.1088/0031-9112/23/12/045.  Google Scholar
[43]

O. S. Rothaus, Analytic inequalities, isoperimetric inequalities and logarithmic Sobolev inequalities, J. Funct. Anal., 64 (1985), 296-313.  doi: 10.1016/0022-1236(2.32)90079-5.  Google Scholar

[44]

A. Schlichting, Macroscopic Limit of the Becker-Döring Equation Via Gradient Flows, ESAIM: COCV, Forthcoming article, 2018. doi: 10.1051/cocv/2018011.  Google Scholar

[45]

S. R. S. Varadhan, Large Deviations and Applications, SIAM, Philadelphia, 1984. doi: 10.1137/1.9781611970241.  Google Scholar

[46]

J. J. L. Velázquez, The Becker-Döring equations and the Lifschitz-Slyozov theory of coarsening, J. Stat. Phys., 92 (1998), 195-236.  doi: 10.1023/A:1023099720145.  Google Scholar

[47]

C. Villani, Topics in Optimal Transportation, Graduate Studies in Mathematics, 58, Amer. Math. Soc., Providence R.I., 2003. doi: 10.1090/gsm/058.  Google Scholar

[48]

C. Wagner, Theorie der Alterung von Niederschlägen durch Umlösen (Ostwald-Reifung), Z. Elektrochem., 65 (1961), 581-591.   Google Scholar

[49] J. A. Walker, Dynamical Systems and Evolution Equations: Theory and Applications., Plenum Press, New York-London, 1980.  doi: 10.1007/978-1-4684-1036-5.  Google Scholar
[1]

Noufel Frikha, Valentin Konakov, Stéphane Menozzi. Well-posedness of some non-linear stable driven SDEs. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 849-898. doi: 10.3934/dcds.2020302

[2]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[3]

Thomas Frenzel, Matthias Liero. Effective diffusion in thin structures via generalized gradient systems and EDP-convergence. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 395-425. doi: 10.3934/dcdss.2020345

[4]

Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020108

[5]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[6]

Gang Luo, Qingzhi Yang. The point-wise convergence of shifted symmetric higher order power method. Journal of Industrial & Management Optimization, 2021, 17 (1) : 357-368. doi: 10.3934/jimo.2019115

[7]

Vieri Benci, Marco Cococcioni. The algorithmic numbers in non-archimedean numerical computing environments. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020449

[8]

Héctor Barge. Čech cohomology, homoclinic trajectories and robustness of non-saddle sets. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020381

[9]

Ying Lin, Qi Ye. Support vector machine classifiers by non-Euclidean margins. Mathematical Foundations of Computing, 2020, 3 (4) : 279-300. doi: 10.3934/mfc.2020018

[10]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[11]

Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080

[12]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[13]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[14]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020076

[15]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[16]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[17]

Wenqiang Zhao, Yijin Zhang. High-order Wong-Zakai approximations for non-autonomous stochastic $ p $-Laplacian equations on $ \mathbb{R}^N $. Communications on Pure & Applied Analysis, 2021, 20 (1) : 243-280. doi: 10.3934/cpaa.2020265

[18]

Abdollah Borhanifar, Maria Alessandra Ragusa, Sohrab Valizadeh. High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020355

[19]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[20]

George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (108)
  • HTML views (108)
  • Cited by (3)

Other articles
by authors

[Back to Top]