-
Previous Article
Binary differential equations with symmetries
- DCDS Home
- This Issue
-
Next Article
Asymptotic expansion of the mean-field approximation
The Schnakenberg model with precursors
School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China |
$ \mu(x) $ |
$ (-1,1) $ |
$ \begin{equation*}\left\{\begin{array}{l}u_{t} = D_{1}u''-\mu(x)u+vu^{2} \hspace{1.64cm} \text{in }(-1,1),\\v_{t} = D_{2}v''+B-vu^{2}\hspace{2.2cm} \;\;\;\; \text{in } (-1,1),\\u'(\pm1) = v'(\pm1) = 0,\end{array}\right.\end{equation*}$ |
$ D_{1}>0 $ |
$ D_{2}>0 $ |
$ B>0 $ |
$ N- $ |
$ \mu(x) $ |
$ D_{1} $ |
$ D_{2} $ |
$ \mu(x) $ |
References:
[1] |
W. W. Ao, M. Musso and J. C. Wei,
On spikes concentrating on line-segments to a semilinear Neumann problem, Journal of Differential Equations, 251 (2011), 881-901.
doi: 10.1016/j.jde.2011.05.009. |
[2] |
D. Benson, P. Maini and J. Sherratt,
Unravelling the Turing bifurcation using spatially varying diffusion cofficents, J. Math.Biol, 37 (1998), 381-417.
doi: 10.1007/s002850050135. |
[3] |
A. Floer and A. Weinstin,
Nonspreading wave packets for the cubic Schödinger equations with a bounded potential, J.Functional Anailsis, 69 (1986), 397-408.
doi: 10.1016/0022-1236(86)90096-0. |
[4] |
D. Gilbarg and N. Turdinger, Elliptic Partical Differential Equations of Second Order, Springer, Berlin, 1983.
doi: 10.1007/978-3-642-61798-0. |
[5] |
C. F. Gui and J. C. Wei,
Multiple interior peak solutions for some singularly perturbation problems, J. Differential Equations, 158 (1999), 1-27.
doi: 10.1016/S0022-0396(99)80016-3. |
[6] |
C. F. Gui, J. C. Wei and M. Winter,
Multiple boundary peak solutions for some singularly peturbed Neumman problems, Ann. Inst. H. Poincaré Anal., 17 (2000), 47-82.
doi: 10.1016/S0294-1449(99)00104-3. |
[7] |
D. Iron, J. C. Wei and M. Winter,
Stability analysis of Turing patterns generated by the Schnakenberg model, J.Math.Biol., 49 (2004), 358-390.
doi: 10.1007/s00285-003-0258-y. |
[8] |
Y. G. Oh.,
Existence of semi-classical bound states of nonlinear Schrödinger equations with potentials of the class (V)α, Comm.partia Differential Equations, 13 (1990), 1499-1519.
doi: 10.1080/03605308808820585. |
[9] |
Y. G. Oh,
On positive multi-bump bound states of nonlinear Schrödinger equations under multiple-well potentials, Comm.Math.Phys., 131 (1990), 223-253.
doi: 10.1007/BF02161413. |
[10] |
J. Schnakenberg,
Simple chemical reaction systems with limit cycle behavior, J.Theoret.Biol, 81 (1979), 389-400.
doi: 10.1016/0022-5193(79)90042-0. |
[11] |
A. Turing,
The chemical basis of morphogenesis, Phil. Trans.Roy, 237 (1952), 37-72.
doi: 10.1098/rstb.1952.0012. |
[12] |
M. Ward and J. C. Wei,
Asymmetric spike patterns for the one-dimensional Gierer-Meinhardt model: equilibria and stability, J.Appl.Math, 13 (2002), 283-320.
doi: 10.1017/S0956792501004442. |
[13] |
M. Ward and J. C. Wei,
The existence and stability of asymmetric spike partterns for the Schnakenberg model, Michigan Math. J., 109 (2002), 229-264.
doi: 10.1111/1467-9590.00223. |
[14] |
J. C. Wei,
On single interior spike solutions of Gierer-Meinhardt system: Uniqueness and spectrum estimates, European. J. Appl. Mth., 10 (1999), 353-378.
doi: 10.1017/S0956792599003770. |
[15] |
J. C. Wei and M. Winter,
Stationary solutions for the Cahn-Hilliard equation, Ann. Inst.H.Poincaré Anal., 348 (1996), 975-995.
|
[16] |
J. C. Wei and M. Winter,
On the Cahn-Hilliard equations: Interior spike layer solutions, J. Differential Equations, 148 (1998), 231-267.
doi: 10.1006/jdeq.1998.3479. |
[17] |
J. C. Wei and M. Winter,
Spikes for the two-dimensional Gierer-Meinhardt system: The weak coupling case, J.Nonlinear Science, 11 (2001), 415-458.
doi: 10.1007/s00332-001-0380-1. |
[18] |
J. C. Wei and M. Winter,
Spikes for the Gierer-Meinhardt system in the two dimensions: The weak coupling case, J.Differential Equations, 178 (2002), 478-518.
doi: 10.1006/jdeq.2001.4019. |
[19] |
J. C. Wei and M. Winter,
Existence and stability analysis of asymmetric patterns for the Gierer-Meinhardt system, J. Math.Pures.Appl, 83 (2004), 433-476.
doi: 10.1016/j.matpur.2003.09.006. |
[20] |
J. C. Wei and M. Winter,
Existence, Classification and Stability analysis of multiple-peaked soiltion for the Gierer-Meinhardt system in R1, Methods and Applications of Analysis, 14 (2007), 119-163.
doi: 10.4310/MAA.2007.v14.n2.a2. |
[21] |
J. C. Wei and M. Winter,
On the Gierer-Meinhardt system with precursors, Discrete Contin. Dyn. Syst., 25 (2009), 363-398.
doi: 10.3934/dcds.2009.25.363. |
[22] |
J. C. Wei and M. Winter,
Flow-distributed spikes for Schnakenberg Kinetics, Mathematical Biology, 64 (2012), 211-254.
doi: 10.1007/s00285-011-0412-x. |
show all references
References:
[1] |
W. W. Ao, M. Musso and J. C. Wei,
On spikes concentrating on line-segments to a semilinear Neumann problem, Journal of Differential Equations, 251 (2011), 881-901.
doi: 10.1016/j.jde.2011.05.009. |
[2] |
D. Benson, P. Maini and J. Sherratt,
Unravelling the Turing bifurcation using spatially varying diffusion cofficents, J. Math.Biol, 37 (1998), 381-417.
doi: 10.1007/s002850050135. |
[3] |
A. Floer and A. Weinstin,
Nonspreading wave packets for the cubic Schödinger equations with a bounded potential, J.Functional Anailsis, 69 (1986), 397-408.
doi: 10.1016/0022-1236(86)90096-0. |
[4] |
D. Gilbarg and N. Turdinger, Elliptic Partical Differential Equations of Second Order, Springer, Berlin, 1983.
doi: 10.1007/978-3-642-61798-0. |
[5] |
C. F. Gui and J. C. Wei,
Multiple interior peak solutions for some singularly perturbation problems, J. Differential Equations, 158 (1999), 1-27.
doi: 10.1016/S0022-0396(99)80016-3. |
[6] |
C. F. Gui, J. C. Wei and M. Winter,
Multiple boundary peak solutions for some singularly peturbed Neumman problems, Ann. Inst. H. Poincaré Anal., 17 (2000), 47-82.
doi: 10.1016/S0294-1449(99)00104-3. |
[7] |
D. Iron, J. C. Wei and M. Winter,
Stability analysis of Turing patterns generated by the Schnakenberg model, J.Math.Biol., 49 (2004), 358-390.
doi: 10.1007/s00285-003-0258-y. |
[8] |
Y. G. Oh.,
Existence of semi-classical bound states of nonlinear Schrödinger equations with potentials of the class (V)α, Comm.partia Differential Equations, 13 (1990), 1499-1519.
doi: 10.1080/03605308808820585. |
[9] |
Y. G. Oh,
On positive multi-bump bound states of nonlinear Schrödinger equations under multiple-well potentials, Comm.Math.Phys., 131 (1990), 223-253.
doi: 10.1007/BF02161413. |
[10] |
J. Schnakenberg,
Simple chemical reaction systems with limit cycle behavior, J.Theoret.Biol, 81 (1979), 389-400.
doi: 10.1016/0022-5193(79)90042-0. |
[11] |
A. Turing,
The chemical basis of morphogenesis, Phil. Trans.Roy, 237 (1952), 37-72.
doi: 10.1098/rstb.1952.0012. |
[12] |
M. Ward and J. C. Wei,
Asymmetric spike patterns for the one-dimensional Gierer-Meinhardt model: equilibria and stability, J.Appl.Math, 13 (2002), 283-320.
doi: 10.1017/S0956792501004442. |
[13] |
M. Ward and J. C. Wei,
The existence and stability of asymmetric spike partterns for the Schnakenberg model, Michigan Math. J., 109 (2002), 229-264.
doi: 10.1111/1467-9590.00223. |
[14] |
J. C. Wei,
On single interior spike solutions of Gierer-Meinhardt system: Uniqueness and spectrum estimates, European. J. Appl. Mth., 10 (1999), 353-378.
doi: 10.1017/S0956792599003770. |
[15] |
J. C. Wei and M. Winter,
Stationary solutions for the Cahn-Hilliard equation, Ann. Inst.H.Poincaré Anal., 348 (1996), 975-995.
|
[16] |
J. C. Wei and M. Winter,
On the Cahn-Hilliard equations: Interior spike layer solutions, J. Differential Equations, 148 (1998), 231-267.
doi: 10.1006/jdeq.1998.3479. |
[17] |
J. C. Wei and M. Winter,
Spikes for the two-dimensional Gierer-Meinhardt system: The weak coupling case, J.Nonlinear Science, 11 (2001), 415-458.
doi: 10.1007/s00332-001-0380-1. |
[18] |
J. C. Wei and M. Winter,
Spikes for the Gierer-Meinhardt system in the two dimensions: The weak coupling case, J.Differential Equations, 178 (2002), 478-518.
doi: 10.1006/jdeq.2001.4019. |
[19] |
J. C. Wei and M. Winter,
Existence and stability analysis of asymmetric patterns for the Gierer-Meinhardt system, J. Math.Pures.Appl, 83 (2004), 433-476.
doi: 10.1016/j.matpur.2003.09.006. |
[20] |
J. C. Wei and M. Winter,
Existence, Classification and Stability analysis of multiple-peaked soiltion for the Gierer-Meinhardt system in R1, Methods and Applications of Analysis, 14 (2007), 119-163.
doi: 10.4310/MAA.2007.v14.n2.a2. |
[21] |
J. C. Wei and M. Winter,
On the Gierer-Meinhardt system with precursors, Discrete Contin. Dyn. Syst., 25 (2009), 363-398.
doi: 10.3934/dcds.2009.25.363. |
[22] |
J. C. Wei and M. Winter,
Flow-distributed spikes for Schnakenberg Kinetics, Mathematical Biology, 64 (2012), 211-254.
doi: 10.1007/s00285-011-0412-x. |
[1] |
Shengbing Deng, Tingxi Hu, Chun-Lei Tang. $ N- $Laplacian problems with critical double exponential nonlinearities. Discrete and Continuous Dynamical Systems, 2021, 41 (2) : 987-1003. doi: 10.3934/dcds.2020306 |
[2] |
Yingying Li, Ying Fu, Changzheng Qu. The two-component $ \mu $-Camassa–Holm system with peaked solutions. Discrete and Continuous Dynamical Systems, 2020, 40 (10) : 5929-5954. doi: 10.3934/dcds.2020253 |
[3] |
Ziqing Yuan, Jianshe Yu. Existence and multiplicity of positive solutions for a class of quasilinear Schrödinger equations in $ \mathbb R^N $$ ^\diamondsuit $. Discrete and Continuous Dynamical Systems - S, 2021, 14 (9) : 3285-3303. doi: 10.3934/dcdss.2020281 |
[4] |
Min Zhao, Changzheng Qu. The two-component Novikov-type systems with peaked solutions and $ H^1 $-conservation law. Communications on Pure and Applied Analysis, 2021, 20 (7&8) : 2857-2883. doi: 10.3934/cpaa.2020245 |
[5] |
Pablo Amster, Mariel Paula Kuna, Dionicio Santos. Stability, existence and non-existence of $ T $-periodic solutions of nonlinear delayed differential equations with $ \varphi $-Laplacian. Communications on Pure and Applied Analysis, 2022, 21 (8) : 2723-2737. doi: 10.3934/cpaa.2022070 |
[6] |
Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure and Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246 |
[7] |
Pak Tung Ho. Prescribing $ Q $-curvature on $ S^n $ in the presence of symmetry. Communications on Pure and Applied Analysis, 2020, 19 (2) : 715-722. doi: 10.3934/cpaa.2020033 |
[8] |
Claudianor O. Alves, Vincenzo Ambrosio, Teresa Isernia. Existence, multiplicity and concentration for a class of fractional $ p \& q $ Laplacian problems in $ \mathbb{R} ^{N} $. Communications on Pure and Applied Analysis, 2019, 18 (4) : 2009-2045. doi: 10.3934/cpaa.2019091 |
[9] |
Fengshuang Gao, Yuxia Guo. Infinitely many solutions for quasilinear equations with critical exponent and Hardy potential in $ \mathbb{R}^N $. Discrete and Continuous Dynamical Systems, 2020, 40 (9) : 5591-5616. doi: 10.3934/dcds.2020239 |
[10] |
Carlos García-Azpeitia. Relative periodic solutions of the $ n $-vortex problem on the sphere. Journal of Geometric Mechanics, 2019, 11 (3) : 427-438. doi: 10.3934/jgm.2019021 |
[11] |
Yanheng Ding, Xiaojing Dong, Qi Guo. On multiplicity of semi-classical solutions to nonlinear Dirac equations of space-dimension $ n $. Discrete and Continuous Dynamical Systems, 2021, 41 (9) : 4105-4123. doi: 10.3934/dcds.2021030 |
[12] |
Wenxian Shen, Shuwen Xue. Spreading speeds of a parabolic-parabolic chemotaxis model with logistic source on $ \mathbb{R}^{N} $. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022074 |
[13] |
Peng Mei, Zhan Zhou, Genghong Lin. Periodic and subharmonic solutions for a 2$n$th-order $\phi_c$-Laplacian difference equation containing both advances and retardations. Discrete and Continuous Dynamical Systems - S, 2019, 12 (7) : 2085-2095. doi: 10.3934/dcdss.2019134 |
[14] |
Rong Zhang. Nonexistence of Positive Solutions for high-order Hardy-H$ \acute{e} $non Systems on $ \mathbb{R}^{n} $. Communications on Pure and Applied Analysis, 2022, 21 (8) : 2857-2872. doi: 10.3934/cpaa.2022078 |
[15] |
Jennifer D. Key, Bernardo G. Rodrigues. Binary codes from $ m $-ary $ n $-cubes $ Q^m_n $. Advances in Mathematics of Communications, 2021, 15 (3) : 507-524. doi: 10.3934/amc.2020079 |
[16] |
Genni Fragnelli, Jerome A. Goldstein, Rosa Maria Mininni, Silvia Romanelli. Operators of order 2$ n $ with interior degeneracy. Discrete and Continuous Dynamical Systems - S, 2020, 13 (12) : 3417-3426. doi: 10.3934/dcdss.2020128 |
[17] |
Jin-Yun Guo, Cong Xiao, Xiaojian Lu. On $ n $-slice algebras and related algebras. Electronic Research Archive, 2021, 29 (4) : 2687-2718. doi: 10.3934/era.2021009 |
[18] |
Mohan Mallick, R. Shivaji, Byungjae Son, S. Sundar. Bifurcation and multiplicity results for a class of $n\times n$ $p$-Laplacian system. Communications on Pure and Applied Analysis, 2018, 17 (3) : 1295-1304. doi: 10.3934/cpaa.2018062 |
[19] |
Nicholas J. Kass, Mohammad A. Rammaha. Local and global existence of solutions to a strongly damped wave equation of the $ p $-Laplacian type. Communications on Pure and Applied Analysis, 2018, 17 (4) : 1449-1478. doi: 10.3934/cpaa.2018070 |
[20] |
Nikolay Dimitrov, Stepan Tersian. Existence of homoclinic solutions for a nonlinear fourth order $ p $-Laplacian difference equation. Discrete and Continuous Dynamical Systems - B, 2020, 25 (2) : 555-567. doi: 10.3934/dcdsb.2019254 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]