April  2019, 39(4): 1923-1955. doi: 10.3934/dcds.2019081

The Schnakenberg model with precursors

School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China

Received  January 2018 Revised  March 2018 Published  January 2019

Fund Project: The research of the first author is supported by NSFC (No. 11801421 and No. 11631011).

In this paper, we mainly consider the following Schnakenberg model with a precursor
$ \mu(x) $
on the interval
$ (-1,1) $
:
$ \begin{equation*}\left\{\begin{array}{l}u_{t} = D_{1}u''-\mu(x)u+vu^{2} \hspace{1.64cm} \text{in }(-1,1),\\v_{t} = D_{2}v''+B-vu^{2}\hspace{2.2cm} \;\;\;\; \text{in } (-1,1),\\u'(\pm1) = v'(\pm1) = 0,\end{array}\right.\end{equation*}$
where
$ D_{1}>0 $
,
$ D_{2}>0 $
,
$ B>0 $
.
We establish the existence and stability of
$ N- $
peaked steady-states in terms of the precursor
$ \mu(x) $
and the diffusion coefficients
$ D_{1} $
and
$ D_{2} $
. It is shown that
$ \mu(x) $
plays an essential role for both existence and stability of the above pattern. Similar result has been obtained for the Gierer-Meinhardt system by Wei and Winter [21].
Citation: Weiwei Ao, Chao Liu. The Schnakenberg model with precursors. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 1923-1955. doi: 10.3934/dcds.2019081
References:
[1]

W. W. AoM. Musso and J. C. Wei, On spikes concentrating on line-segments to a semilinear Neumann problem, Journal of Differential Equations, 251 (2011), 881-901.  doi: 10.1016/j.jde.2011.05.009.  Google Scholar

[2]

D. BensonP. Maini and J. Sherratt, Unravelling the Turing bifurcation using spatially varying diffusion cofficents, J. Math.Biol, 37 (1998), 381-417.  doi: 10.1007/s002850050135.  Google Scholar

[3]

A. Floer and A. Weinstin, Nonspreading wave packets for the cubic Schödinger equations with a bounded potential, J.Functional Anailsis, 69 (1986), 397-408.  doi: 10.1016/0022-1236(86)90096-0.  Google Scholar

[4]

D. Gilbarg and N. Turdinger, Elliptic Partical Differential Equations of Second Order, Springer, Berlin, 1983. doi: 10.1007/978-3-642-61798-0.  Google Scholar

[5]

C. F. Gui and J. C. Wei, Multiple interior peak solutions for some singularly perturbation problems, J. Differential Equations, 158 (1999), 1-27.  doi: 10.1016/S0022-0396(99)80016-3.  Google Scholar

[6]

C. F. GuiJ. C. Wei and M. Winter, Multiple boundary peak solutions for some singularly peturbed Neumman problems, Ann. Inst. H. Poincaré Anal., 17 (2000), 47-82.  doi: 10.1016/S0294-1449(99)00104-3.  Google Scholar

[7]

D. IronJ. C. Wei and M. Winter, Stability analysis of Turing patterns generated by the Schnakenberg model, J.Math.Biol., 49 (2004), 358-390.  doi: 10.1007/s00285-003-0258-y.  Google Scholar

[8]

Y. G. Oh., Existence of semi-classical bound states of nonlinear Schrödinger equations with potentials of the class (V)α, Comm.partia Differential Equations, 13 (1990), 1499-1519.  doi: 10.1080/03605308808820585.  Google Scholar

[9]

Y. G. Oh, On positive multi-bump bound states of nonlinear Schrödinger equations under multiple-well potentials, Comm.Math.Phys., 131 (1990), 223-253.  doi: 10.1007/BF02161413.  Google Scholar

[10]

J. Schnakenberg, Simple chemical reaction systems with limit cycle behavior, J.Theoret.Biol, 81 (1979), 389-400.  doi: 10.1016/0022-5193(79)90042-0.  Google Scholar

[11]

A. Turing, The chemical basis of morphogenesis, Phil. Trans.Roy, 237 (1952), 37-72.  doi: 10.1098/rstb.1952.0012.  Google Scholar

[12]

M. Ward and J. C. Wei, Asymmetric spike patterns for the one-dimensional Gierer-Meinhardt model: equilibria and stability, J.Appl.Math, 13 (2002), 283-320.  doi: 10.1017/S0956792501004442.  Google Scholar

[13]

M. Ward and J. C. Wei, The existence and stability of asymmetric spike partterns for the Schnakenberg model, Michigan Math. J., 109 (2002), 229-264.  doi: 10.1111/1467-9590.00223.  Google Scholar

[14]

J. C. Wei, On single interior spike solutions of Gierer-Meinhardt system: Uniqueness and spectrum estimates, European. J. Appl. Mth., 10 (1999), 353-378.  doi: 10.1017/S0956792599003770.  Google Scholar

[15]

J. C. Wei and M. Winter, Stationary solutions for the Cahn-Hilliard equation, Ann. Inst.H.Poincaré Anal., 348 (1996), 975-995.   Google Scholar

[16]

J. C. Wei and M. Winter, On the Cahn-Hilliard equations: Interior spike layer solutions, J. Differential Equations, 148 (1998), 231-267.  doi: 10.1006/jdeq.1998.3479.  Google Scholar

[17]

J. C. Wei and M. Winter, Spikes for the two-dimensional Gierer-Meinhardt system: The weak coupling case, J.Nonlinear Science, 11 (2001), 415-458.  doi: 10.1007/s00332-001-0380-1.  Google Scholar

[18]

J. C. Wei and M. Winter, Spikes for the Gierer-Meinhardt system in the two dimensions: The weak coupling case, J.Differential Equations, 178 (2002), 478-518.  doi: 10.1006/jdeq.2001.4019.  Google Scholar

[19]

J. C. Wei and M. Winter, Existence and stability analysis of asymmetric patterns for the Gierer-Meinhardt system, J. Math.Pures.Appl, 83 (2004), 433-476.  doi: 10.1016/j.matpur.2003.09.006.  Google Scholar

[20]

J. C. Wei and M. Winter, Existence, Classification and Stability analysis of multiple-peaked soiltion for the Gierer-Meinhardt system in R1, Methods and Applications of Analysis, 14 (2007), 119-163.  doi: 10.4310/MAA.2007.v14.n2.a2.  Google Scholar

[21]

J. C. Wei and M. Winter, On the Gierer-Meinhardt system with precursors, Discrete Contin. Dyn. Syst., 25 (2009), 363-398.  doi: 10.3934/dcds.2009.25.363.  Google Scholar

[22]

J. C. Wei and M. Winter, Flow-distributed spikes for Schnakenberg Kinetics, Mathematical Biology, 64 (2012), 211-254.  doi: 10.1007/s00285-011-0412-x.  Google Scholar

show all references

References:
[1]

W. W. AoM. Musso and J. C. Wei, On spikes concentrating on line-segments to a semilinear Neumann problem, Journal of Differential Equations, 251 (2011), 881-901.  doi: 10.1016/j.jde.2011.05.009.  Google Scholar

[2]

D. BensonP. Maini and J. Sherratt, Unravelling the Turing bifurcation using spatially varying diffusion cofficents, J. Math.Biol, 37 (1998), 381-417.  doi: 10.1007/s002850050135.  Google Scholar

[3]

A. Floer and A. Weinstin, Nonspreading wave packets for the cubic Schödinger equations with a bounded potential, J.Functional Anailsis, 69 (1986), 397-408.  doi: 10.1016/0022-1236(86)90096-0.  Google Scholar

[4]

D. Gilbarg and N. Turdinger, Elliptic Partical Differential Equations of Second Order, Springer, Berlin, 1983. doi: 10.1007/978-3-642-61798-0.  Google Scholar

[5]

C. F. Gui and J. C. Wei, Multiple interior peak solutions for some singularly perturbation problems, J. Differential Equations, 158 (1999), 1-27.  doi: 10.1016/S0022-0396(99)80016-3.  Google Scholar

[6]

C. F. GuiJ. C. Wei and M. Winter, Multiple boundary peak solutions for some singularly peturbed Neumman problems, Ann. Inst. H. Poincaré Anal., 17 (2000), 47-82.  doi: 10.1016/S0294-1449(99)00104-3.  Google Scholar

[7]

D. IronJ. C. Wei and M. Winter, Stability analysis of Turing patterns generated by the Schnakenberg model, J.Math.Biol., 49 (2004), 358-390.  doi: 10.1007/s00285-003-0258-y.  Google Scholar

[8]

Y. G. Oh., Existence of semi-classical bound states of nonlinear Schrödinger equations with potentials of the class (V)α, Comm.partia Differential Equations, 13 (1990), 1499-1519.  doi: 10.1080/03605308808820585.  Google Scholar

[9]

Y. G. Oh, On positive multi-bump bound states of nonlinear Schrödinger equations under multiple-well potentials, Comm.Math.Phys., 131 (1990), 223-253.  doi: 10.1007/BF02161413.  Google Scholar

[10]

J. Schnakenberg, Simple chemical reaction systems with limit cycle behavior, J.Theoret.Biol, 81 (1979), 389-400.  doi: 10.1016/0022-5193(79)90042-0.  Google Scholar

[11]

A. Turing, The chemical basis of morphogenesis, Phil. Trans.Roy, 237 (1952), 37-72.  doi: 10.1098/rstb.1952.0012.  Google Scholar

[12]

M. Ward and J. C. Wei, Asymmetric spike patterns for the one-dimensional Gierer-Meinhardt model: equilibria and stability, J.Appl.Math, 13 (2002), 283-320.  doi: 10.1017/S0956792501004442.  Google Scholar

[13]

M. Ward and J. C. Wei, The existence and stability of asymmetric spike partterns for the Schnakenberg model, Michigan Math. J., 109 (2002), 229-264.  doi: 10.1111/1467-9590.00223.  Google Scholar

[14]

J. C. Wei, On single interior spike solutions of Gierer-Meinhardt system: Uniqueness and spectrum estimates, European. J. Appl. Mth., 10 (1999), 353-378.  doi: 10.1017/S0956792599003770.  Google Scholar

[15]

J. C. Wei and M. Winter, Stationary solutions for the Cahn-Hilliard equation, Ann. Inst.H.Poincaré Anal., 348 (1996), 975-995.   Google Scholar

[16]

J. C. Wei and M. Winter, On the Cahn-Hilliard equations: Interior spike layer solutions, J. Differential Equations, 148 (1998), 231-267.  doi: 10.1006/jdeq.1998.3479.  Google Scholar

[17]

J. C. Wei and M. Winter, Spikes for the two-dimensional Gierer-Meinhardt system: The weak coupling case, J.Nonlinear Science, 11 (2001), 415-458.  doi: 10.1007/s00332-001-0380-1.  Google Scholar

[18]

J. C. Wei and M. Winter, Spikes for the Gierer-Meinhardt system in the two dimensions: The weak coupling case, J.Differential Equations, 178 (2002), 478-518.  doi: 10.1006/jdeq.2001.4019.  Google Scholar

[19]

J. C. Wei and M. Winter, Existence and stability analysis of asymmetric patterns for the Gierer-Meinhardt system, J. Math.Pures.Appl, 83 (2004), 433-476.  doi: 10.1016/j.matpur.2003.09.006.  Google Scholar

[20]

J. C. Wei and M. Winter, Existence, Classification and Stability analysis of multiple-peaked soiltion for the Gierer-Meinhardt system in R1, Methods and Applications of Analysis, 14 (2007), 119-163.  doi: 10.4310/MAA.2007.v14.n2.a2.  Google Scholar

[21]

J. C. Wei and M. Winter, On the Gierer-Meinhardt system with precursors, Discrete Contin. Dyn. Syst., 25 (2009), 363-398.  doi: 10.3934/dcds.2009.25.363.  Google Scholar

[22]

J. C. Wei and M. Winter, Flow-distributed spikes for Schnakenberg Kinetics, Mathematical Biology, 64 (2012), 211-254.  doi: 10.1007/s00285-011-0412-x.  Google Scholar

[1]

Shengbing Deng, Tingxi Hu, Chun-Lei Tang. $ N- $Laplacian problems with critical double exponential nonlinearities. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020306

[2]

Yingying Li, Ying Fu, Changzheng Qu. The two-component $ \mu $-Camassa–Holm system with peaked solutions. Discrete & Continuous Dynamical Systems - A, 2020, 40 (10) : 5929-5954. doi: 10.3934/dcds.2020253

[3]

Ziqing Yuan, Jianshe Yu. Existence and multiplicity of positive solutions for a class of quasilinear Schrödinger equations in $ \mathbb R^N $$ ^\diamondsuit $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020281

[4]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020246

[5]

Min Zhao, Changzheng Qu. The two-component Novikov-type systems with peaked solutions and $ H^1 $-conservation law. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020245

[6]

Pak Tung Ho. Prescribing $ Q $-curvature on $ S^n $ in the presence of symmetry. Communications on Pure & Applied Analysis, 2020, 19 (2) : 715-722. doi: 10.3934/cpaa.2020033

[7]

Claudianor O. Alves, Vincenzo Ambrosio, Teresa Isernia. Existence, multiplicity and concentration for a class of fractional $ p \& q $ Laplacian problems in $ \mathbb{R} ^{N} $. Communications on Pure & Applied Analysis, 2019, 18 (4) : 2009-2045. doi: 10.3934/cpaa.2019091

[8]

Fengshuang Gao, Yuxia Guo. Infinitely many solutions for quasilinear equations with critical exponent and Hardy potential in $ \mathbb{R}^N $. Discrete & Continuous Dynamical Systems - A, 2020, 40 (9) : 5591-5616. doi: 10.3934/dcds.2020239

[9]

Carlos García-Azpeitia. Relative periodic solutions of the $ n $-vortex problem on the sphere. Journal of Geometric Mechanics, 2019, 11 (3) : 427-438. doi: 10.3934/jgm.2019021

[10]

Peng Mei, Zhan Zhou, Genghong Lin. Periodic and subharmonic solutions for a 2$n$th-order $\phi_c$-Laplacian difference equation containing both advances and retardations. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 2085-2095. doi: 10.3934/dcdss.2019134

[11]

Jennifer D. Key, Bernardo G. Rodrigues. Binary codes from $ m $-ary $ n $-cubes $ Q^m_n $. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020079

[12]

Genni Fragnelli, Jerome A. Goldstein, Rosa Maria Mininni, Silvia Romanelli. Operators of order 2$ n $ with interior degeneracy. Discrete & Continuous Dynamical Systems - S, 2020, 13 (12) : 3417-3426. doi: 10.3934/dcdss.2020128

[13]

Mohan Mallick, R. Shivaji, Byungjae Son, S. Sundar. Bifurcation and multiplicity results for a class of $n\times n$ $p$-Laplacian system. Communications on Pure & Applied Analysis, 2018, 17 (3) : 1295-1304. doi: 10.3934/cpaa.2018062

[14]

Rakesh Nandi, Sujit Kumar Samanta, Chesoong Kim. Analysis of $ D $-$ BMAP/G/1 $ queueing system under $ N $-policy and its cost optimization. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020135

[15]

Changchun Liu, Pingping Li. Global existence for a chemotaxis-haptotaxis model with $ p $-Laplacian. Communications on Pure & Applied Analysis, 2020, 19 (3) : 1399-1419. doi: 10.3934/cpaa.2020070

[16]

Nikolay Dimitrov, Stepan Tersian. Existence of homoclinic solutions for a nonlinear fourth order $ p $-Laplacian difference equation. Discrete & Continuous Dynamical Systems - B, 2020, 25 (2) : 555-567. doi: 10.3934/dcdsb.2019254

[17]

Nicholas J. Kass, Mohammad A. Rammaha. Local and global existence of solutions to a strongly damped wave equation of the $ p $-Laplacian type. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1449-1478. doi: 10.3934/cpaa.2018070

[18]

Jianqin Zhou, Wanquan Liu, Xifeng Wang, Guanglu Zhou. On the $ k $-error linear complexity for $ p^n $-periodic binary sequences via hypercube theory. Mathematical Foundations of Computing, 2019, 2 (4) : 279-297. doi: 10.3934/mfc.2019018

[19]

Mei Yu, Xia Zhang, Binlin Zhang. Property of solutions for elliptic equation involving the higher-order fractional Laplacian in $ \mathbb{R}^n_+ $. Communications on Pure & Applied Analysis, 2020, 19 (7) : 3597-3612. doi: 10.3934/cpaa.2020157

[20]

Erchuan Zhang, Lyle Noakes. Riemannian cubics and elastica in the manifold $ \operatorname{SPD}(n) $ of all $ n\times n $ symmetric positive-definite matrices. Journal of Geometric Mechanics, 2019, 11 (2) : 277-299. doi: 10.3934/jgm.2019015

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (120)
  • HTML views (122)
  • Cited by (0)

Other articles
by authors

[Back to Top]