[1]
|
M. D'amico, G. Manzini and L. Margara, On computing the entropy of cellular automata, Theoretical Computer Science, 290 (2003), 1629-1646.
doi: 10.1016/S0304-3975(02)00071-3.
|
[2]
|
J.-C. Delvenne and V. D. Blondel, Quasi-periodic configurations and undecidable dynamics for tilings, infinite words and Turing machines, Theoretical Computer Science, 319 (2004), 127-143.
doi: 10.1016/j.tcs.2004.02.018.
|
[3]
|
K. Engel, On the Fibonacci number of an m×n lattice, Fibonacci Quart, 28 (1990), 72-78.
|
[4]
|
S. Gangloff and M. Sablik, Quantified block gluing: aperiodicity and entropy of multidimensional SFT, Preprint, https://arXiv.org/abs/1706.01627, 2017.
|
[5]
|
P. Guillon and C. Zinoviadis, Densities and entropies in cellular automata, In Conference on Computability in Europe, Springer, 7318 (2012), 253–263.
doi: 10.1007/978-3-642-30870-3_26.
|
[6]
|
P. Hertling and C. Spandl, Shifts with decidable language and non-computable entropy, Discrete Mathematics and Theoretical Computer Science, 10 (2008), 75-93.
|
[7]
|
M. Hochman, On the dynamics and recursive properties of multidimensional symbolic systems, Inventiones Mathematicae, 176 (2009), 131-167.
doi: 10.1007/s00222-008-0161-7.
|
[8]
|
M. Hochman and T. Meyerovitch, A characterization of the entropies of multidimensional shifts of finite type, Annals of Mathematics, 171 (2010), 2011-2038.
doi: 10.4007/annals.2010.171.2011.
|
[9]
|
L. P. Hurd, J. Kari and K. Culik, The topological entropy of cellular automata is uncomputable, Ergodic Theory and Dynamical Systems, 12 (1992), 255-265.
doi: 10.1017/S0143385700006738.
|
[10]
|
E. Jeandel, Computability of the entropy of one-tape Turing machines, STACS-Symposium on Theoretical Aspects of Computer Science, 25 (2014), 421-432.
doi: 10.4230/LIPIcs.STACS.2014.421.
|
[11]
|
P. Koiran, The topological entropy of iterated piecewise affine maps is uncomputable, Theoretical Computer Science, 4 (2001), 351-356.
|
[12]
|
E. H. Lieb, Residual entropy of square ice, Physical Review, 162 (1967), 162.
doi: 10.1103/PhysRev.162.162.
|
[13]
|
D. Lind and B. Marcus, An Introduction to Symbolic Dynamics and Coding, Cambridge university press, 1995.
doi: 10.1017/CBO9780511626302.
|
[14]
|
D. A. Lind, The entropies of topological Markov shifts and a related class of algebraic integers, Ergodic Theory and Dynamical Systems, 4 (1984), 283-300.
doi: 10.1017/S0143385700002443.
|
[15]
|
J. Milnor, Is the entropy effectively computable?, Unpublished note, http://www.math.stonybrook.edu/~jack/comp-ent.pdf.
|
[16]
|
J. Milnor and C. Tresser, On entropy and monotonicity for real cubic maps, Communications in Mathematical Physics, 209 (2000), 123-178.
doi: 10.1007/s002200050018.
|
[17]
|
M. Misiurewicz, On non-continuity of topological entropy, Bull. Ac. Pol. Sci. Ser. Sci. Math. Astr. Phys., 19 (1971), 319-320.
|
[18]
|
R. Pavlov et al., Approximating the hard square entropy constant with probabilistic methods,
The Annals of Probability, 40 (2012), 2362-2399.
doi: 10.1214/11-AOP681.
|
[19]
|
R. Pavlov and M. Schraudner, Entropies realizable by block gluing $ \mathbb Z ^d$-subshifts of finite type, Journal d'Analyse Mathématique, 126 (2015), 113-174.
doi: 10.1007/s11854-015-0014-4.
|
[20]
|
J. G. Simonsen, On the computability of the topological entropy of subshifts, Discrete Mathematics and Theoretical Computer Science, 8 (2006), 83-95.
|
[21]
|
C. Spandl, Computing the topological entropy of shifts, Mathematical Logic Quarterly, 53 (2007), 493-510.
doi: 10.1002/malq.200710014.
|
[22]
|
B. Stanley, Bounded density shifts, Ergodic Theory and Dynamical Systems, 33 (2013), 1891-1928.
doi: 10.1017/etds.2013.38.
|