April  2019, 39(4): 2021-2057. doi: 10.3934/dcds.2019085

Global existence and optimal decay estimates of the compressible viscoelastic flows in $ L^p $ critical spaces

Department of Mathematics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received  March 2018 Revised  August 2018 Published  January 2019

In this paper, we are concerned with the compressible viscoelastic flows in whole space $ \mathbb{R}^n $ with $ n\geq2 $. We aim at extending the global existence in energy spaces (see [18] by Hu & Wang and [30] by Qian & Zhang) such that it holds in more general $ L^p $ critical spaces, which allows to the case of large highly oscillating initial velocity. Precisely, We define "two effective velocities" which are used to eliminate the coupling between the density, velocity and deformation tensor. Consequently, the global existence in the $ L^p $ critical framework is constructed by elementary energy approaches. In addition, the optimal time-decay estimates of strong solutions are firstly shown in the $ L^p $ framework, which improve recent decay efforts for compressible viscoelastic flows.

Citation: Xinghong Pan, Jiang Xu. Global existence and optimal decay estimates of the compressible viscoelastic flows in $ L^p $ critical spaces. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 2021-2057. doi: 10.3934/dcds.2019085
References:
[1]

H. Abidi, Équation de Navier-Stokes avec densité et viscosité variables dans l'espace critique, Rev. Mat. Iberoam., 23 (2007), 537-586.  doi: 10.4171/RMI/505.  Google Scholar

[2]

H. Bahouri, J. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, 343. Springer, Heidelberg, 2011. xvi+523 pp. doi: 10.1007/978-3-642-16830-7.  Google Scholar

[3]

F. Charve and R. Danchin, A global existence result for the compressible Navier-Stokes equations in the critical Lp framework, Arch. Ration. Mech. Anal., 198 (2010), 233-271.  doi: 10.1007/s00205-010-0306-x.  Google Scholar

[4]

J. Chemin and N. Masmoudi, About lifespan of regular solutions of equations related to viscoelastic fluids, SIAM J. Math. Anal., 33 (2001), 84-112.  doi: 10.1137/S0036141099359317.  Google Scholar

[5]

Q. ChenC. Miao and Z. Zhang, Global well-posedness for compressible Navier-Stokes equations with highly oscillating initial velocity, Comm. Pure Appl. Math., 63 (2010), 1173-1224.  doi: 10.1002/cpa.20325.  Google Scholar

[6]

Y. Chen and P. Zhang, The global existence of small solutions to the incompressible viscoelastic fluid system in 2 and 3 space dimensions, Comm. Partial Differential Equations, 31 (2006), 1793-1810.  doi: 10.1080/03605300600858960.  Google Scholar

[7]

R. Danchin and J. Xu, Optimal time-decay estimates for the compressible Navier-Stokes equations in the critical $L^p$ framework, Arch. Ration. Mech. Anal., 224 (2017), 53-90.  doi: 10.1007/s00205-016-1067-y.  Google Scholar

[8]

R. Danchin, Global existence in critical spaces for compressible Navier-Stokes equations, Invent. Math., 141 (2000), 579-614.  doi: 10.1007/s002220000078.  Google Scholar

[9]

R. Danchin, Local theory in critical spaces for compressible viscous and heat-conductive gases, Comm. Partial Differential Equations, 26 (2001), 1183-1233.  doi: 10.1081/PDE-100106132.  Google Scholar

[10]

R. Danchin, Density-dependent incompressible viscous fluids in critical spaces, Proc. Roy. Soc. Edinburgh Sect. A, 133 (2003), 1311-1334.  doi: 10.1017/S030821050000295X.  Google Scholar

[11]

R. Danchin, On the uniqueness in critical spaces for compressible Navier-Stokes equations, Nonlinear Differential Equations Appl., 12 (2005), 111-128.  doi: 10.1007/s00030-004-2032-2.  Google Scholar

[12]

R. Danchin, A Lagrangian approach for the compressible Navier-Stokes equations, Ann. Inst. Fourier (Grenoble), 64 (2014), 753-791.  doi: 10.5802/aif.2865.  Google Scholar

[13]

W. ET. Li and P. Zhang, Well-posedness for the dumbbell model of polymeric fluids, Comm. Math. Phys., 248 (2004), 409-427.  doi: 10.1007/s00220-004-1102-y.  Google Scholar

[14]

M. Gurtin, An introduction to continuum mechanics, Mathematics in Science and Engineering, 158, New York-London, 1981.  Google Scholar

[15]

B. Haspot, Well-posedness in critical spaces for the system of compressible Navier-Stokes in larger spaces, J. Differential Equations, 251 (2011), 2262-2295.  doi: 10.1016/j.jde.2011.06.013.  Google Scholar

[16]

B. Haspot, Existence of global strong solutions in critical spaces for barotropic viscous fluids, Arch. Ration. Mech. Anal., 202 (2011), 427-460.  doi: 10.1007/s00205-011-0430-2.  Google Scholar

[17]

D. Hoff, Uniqueness of weak solutions of the Navier-Stokes equations of multidimensional, compressible flow, SIAM J. Math. Anal., 37 (2006), 1742-1760.  doi: 10.1137/040618059.  Google Scholar

[18]

X. Hu and D. Wang, Global existence for the multi-dimensional compressible viscoelastic flows, J. Differential Equations, 250 (2011), 1200-1231.  doi: 10.1016/j.jde.2010.10.017.  Google Scholar

[19]

X. Hu and D. Wang, Local strong solution to the compressible viscoelastic flow with large data, J. Differential Equations, 249 (2010), 1179-1198.  doi: 10.1016/j.jde.2010.03.027.  Google Scholar

[20]

X. Hu and G. Wu, Global existence and optimal decay rates for three-dimensional compressible viscoelastic flows, SIAM J. Math. Anal., 45 (2013), 2815-2833.  doi: 10.1137/120892350.  Google Scholar

[21]

X. Hu and H. Wu, Long-time behavior and weak-strong uniqueness for incompressible viscoelastic flows, Discrete Contin. Dyn. Syst., 35 (2015), 3437-3461.  doi: 10.3934/dcds.2015.35.3437.  Google Scholar

[22]

Z. LeiC. Liu and Y. Zhou, Global solutions for incompressible viscoelastic fluids, Arch. Ration. Mech. Anal., 188 (2008), 371-398.  doi: 10.1007/s00205-007-0089-x.  Google Scholar

[23]

Z. LeiC. Liu and Y. Zhou, Global existence for a 2D incompressible viscoelastic model with small strain, Commun. Math. Sci., 5 (2007), 595-616.  doi: 10.4310/CMS.2007.v5.n3.a5.  Google Scholar

[24]

Z. Lei and Y. Zhou, Global existence of classical solutions for the two-dimensional Oldroyd model via the incompressible limit, SIAM J. Math. Anal., 37 (2005), 797-814.  doi: 10.1137/040618813.  Google Scholar

[25]

F. Lin and P. Zhang, On the initial-boundary value problem of the incompressible viscoelastic fluid system, Comm. Pure Appl. Math., 61 (2008), 539-558.  doi: 10.1002/cpa.20219.  Google Scholar

[26]

F. LinC. Liu and P. Zhang, On hydrodynamics of viscoelastic fluids, Comm. Pure Appl. Math., 58 (2005), 1437-1471.  doi: 10.1002/cpa.20074.  Google Scholar

[27]

P. Lions and N. Masmoudi, Global solutions for some Oldroyd models of non-Newtonian flows, Chinese Ann. Math. Ser. B, 21 (2000), 131-146.  doi: 10.1142/S0252959900000170.  Google Scholar

[28]

C. Liu and N. Walkington, An Eulerian description of fluids containing visco-elastic particles, Arch. Ration. Mech. Anal., 159 (2001), 229-252.  doi: 10.1007/s002050100158.  Google Scholar

[29]

J. Qian, Well-posedness in critical spaces for incompressible viscoelastic fluid system, Nonlinear Anal., 72 (2010), 3222-3234.  doi: 10.1016/j.na.2009.12.022.  Google Scholar

[30]

J. Qian and Z. Zhang, Global well-posedness for compressible viscoelastic fluids near equilibrium, Arch. Ration. Mech. Anal., 198 (2010), 835-868.  doi: 10.1007/s00205-010-0351-5.  Google Scholar

[31]

V. Sohinger and R. Strain, The Boltzmann equation, Besov spaces, and optimal time decay rates in $ {\mathbb R} ^n_x$, Adv. Math., 261 (2014), 274-332.  doi: 10.1016/j.aim.2014.04.012.  Google Scholar

[32]

J. Xu and S. Kawashima, The optimal decay estimates on the framework of Besov spaces for generally dissipative systems, Arch. Ration. Mech. Anal., 218 (2015), 275-315.  doi: 10.1007/s00205-015-0860-3.  Google Scholar

[33]

T. Zhang and D. Fang, Global existence of strong solution for equations related to the incompressible viscoelastic fluids in the critical $L^p$ framework, SIAM J. Math. Anal., 44 (2012), 2266-2288.  doi: 10.1137/110851742.  Google Scholar

show all references

References:
[1]

H. Abidi, Équation de Navier-Stokes avec densité et viscosité variables dans l'espace critique, Rev. Mat. Iberoam., 23 (2007), 537-586.  doi: 10.4171/RMI/505.  Google Scholar

[2]

H. Bahouri, J. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, 343. Springer, Heidelberg, 2011. xvi+523 pp. doi: 10.1007/978-3-642-16830-7.  Google Scholar

[3]

F. Charve and R. Danchin, A global existence result for the compressible Navier-Stokes equations in the critical Lp framework, Arch. Ration. Mech. Anal., 198 (2010), 233-271.  doi: 10.1007/s00205-010-0306-x.  Google Scholar

[4]

J. Chemin and N. Masmoudi, About lifespan of regular solutions of equations related to viscoelastic fluids, SIAM J. Math. Anal., 33 (2001), 84-112.  doi: 10.1137/S0036141099359317.  Google Scholar

[5]

Q. ChenC. Miao and Z. Zhang, Global well-posedness for compressible Navier-Stokes equations with highly oscillating initial velocity, Comm. Pure Appl. Math., 63 (2010), 1173-1224.  doi: 10.1002/cpa.20325.  Google Scholar

[6]

Y. Chen and P. Zhang, The global existence of small solutions to the incompressible viscoelastic fluid system in 2 and 3 space dimensions, Comm. Partial Differential Equations, 31 (2006), 1793-1810.  doi: 10.1080/03605300600858960.  Google Scholar

[7]

R. Danchin and J. Xu, Optimal time-decay estimates for the compressible Navier-Stokes equations in the critical $L^p$ framework, Arch. Ration. Mech. Anal., 224 (2017), 53-90.  doi: 10.1007/s00205-016-1067-y.  Google Scholar

[8]

R. Danchin, Global existence in critical spaces for compressible Navier-Stokes equations, Invent. Math., 141 (2000), 579-614.  doi: 10.1007/s002220000078.  Google Scholar

[9]

R. Danchin, Local theory in critical spaces for compressible viscous and heat-conductive gases, Comm. Partial Differential Equations, 26 (2001), 1183-1233.  doi: 10.1081/PDE-100106132.  Google Scholar

[10]

R. Danchin, Density-dependent incompressible viscous fluids in critical spaces, Proc. Roy. Soc. Edinburgh Sect. A, 133 (2003), 1311-1334.  doi: 10.1017/S030821050000295X.  Google Scholar

[11]

R. Danchin, On the uniqueness in critical spaces for compressible Navier-Stokes equations, Nonlinear Differential Equations Appl., 12 (2005), 111-128.  doi: 10.1007/s00030-004-2032-2.  Google Scholar

[12]

R. Danchin, A Lagrangian approach for the compressible Navier-Stokes equations, Ann. Inst. Fourier (Grenoble), 64 (2014), 753-791.  doi: 10.5802/aif.2865.  Google Scholar

[13]

W. ET. Li and P. Zhang, Well-posedness for the dumbbell model of polymeric fluids, Comm. Math. Phys., 248 (2004), 409-427.  doi: 10.1007/s00220-004-1102-y.  Google Scholar

[14]

M. Gurtin, An introduction to continuum mechanics, Mathematics in Science and Engineering, 158, New York-London, 1981.  Google Scholar

[15]

B. Haspot, Well-posedness in critical spaces for the system of compressible Navier-Stokes in larger spaces, J. Differential Equations, 251 (2011), 2262-2295.  doi: 10.1016/j.jde.2011.06.013.  Google Scholar

[16]

B. Haspot, Existence of global strong solutions in critical spaces for barotropic viscous fluids, Arch. Ration. Mech. Anal., 202 (2011), 427-460.  doi: 10.1007/s00205-011-0430-2.  Google Scholar

[17]

D. Hoff, Uniqueness of weak solutions of the Navier-Stokes equations of multidimensional, compressible flow, SIAM J. Math. Anal., 37 (2006), 1742-1760.  doi: 10.1137/040618059.  Google Scholar

[18]

X. Hu and D. Wang, Global existence for the multi-dimensional compressible viscoelastic flows, J. Differential Equations, 250 (2011), 1200-1231.  doi: 10.1016/j.jde.2010.10.017.  Google Scholar

[19]

X. Hu and D. Wang, Local strong solution to the compressible viscoelastic flow with large data, J. Differential Equations, 249 (2010), 1179-1198.  doi: 10.1016/j.jde.2010.03.027.  Google Scholar

[20]

X. Hu and G. Wu, Global existence and optimal decay rates for three-dimensional compressible viscoelastic flows, SIAM J. Math. Anal., 45 (2013), 2815-2833.  doi: 10.1137/120892350.  Google Scholar

[21]

X. Hu and H. Wu, Long-time behavior and weak-strong uniqueness for incompressible viscoelastic flows, Discrete Contin. Dyn. Syst., 35 (2015), 3437-3461.  doi: 10.3934/dcds.2015.35.3437.  Google Scholar

[22]

Z. LeiC. Liu and Y. Zhou, Global solutions for incompressible viscoelastic fluids, Arch. Ration. Mech. Anal., 188 (2008), 371-398.  doi: 10.1007/s00205-007-0089-x.  Google Scholar

[23]

Z. LeiC. Liu and Y. Zhou, Global existence for a 2D incompressible viscoelastic model with small strain, Commun. Math. Sci., 5 (2007), 595-616.  doi: 10.4310/CMS.2007.v5.n3.a5.  Google Scholar

[24]

Z. Lei and Y. Zhou, Global existence of classical solutions for the two-dimensional Oldroyd model via the incompressible limit, SIAM J. Math. Anal., 37 (2005), 797-814.  doi: 10.1137/040618813.  Google Scholar

[25]

F. Lin and P. Zhang, On the initial-boundary value problem of the incompressible viscoelastic fluid system, Comm. Pure Appl. Math., 61 (2008), 539-558.  doi: 10.1002/cpa.20219.  Google Scholar

[26]

F. LinC. Liu and P. Zhang, On hydrodynamics of viscoelastic fluids, Comm. Pure Appl. Math., 58 (2005), 1437-1471.  doi: 10.1002/cpa.20074.  Google Scholar

[27]

P. Lions and N. Masmoudi, Global solutions for some Oldroyd models of non-Newtonian flows, Chinese Ann. Math. Ser. B, 21 (2000), 131-146.  doi: 10.1142/S0252959900000170.  Google Scholar

[28]

C. Liu and N. Walkington, An Eulerian description of fluids containing visco-elastic particles, Arch. Ration. Mech. Anal., 159 (2001), 229-252.  doi: 10.1007/s002050100158.  Google Scholar

[29]

J. Qian, Well-posedness in critical spaces for incompressible viscoelastic fluid system, Nonlinear Anal., 72 (2010), 3222-3234.  doi: 10.1016/j.na.2009.12.022.  Google Scholar

[30]

J. Qian and Z. Zhang, Global well-posedness for compressible viscoelastic fluids near equilibrium, Arch. Ration. Mech. Anal., 198 (2010), 835-868.  doi: 10.1007/s00205-010-0351-5.  Google Scholar

[31]

V. Sohinger and R. Strain, The Boltzmann equation, Besov spaces, and optimal time decay rates in $ {\mathbb R} ^n_x$, Adv. Math., 261 (2014), 274-332.  doi: 10.1016/j.aim.2014.04.012.  Google Scholar

[32]

J. Xu and S. Kawashima, The optimal decay estimates on the framework of Besov spaces for generally dissipative systems, Arch. Ration. Mech. Anal., 218 (2015), 275-315.  doi: 10.1007/s00205-015-0860-3.  Google Scholar

[33]

T. Zhang and D. Fang, Global existence of strong solution for equations related to the incompressible viscoelastic fluids in the critical $L^p$ framework, SIAM J. Math. Anal., 44 (2012), 2266-2288.  doi: 10.1137/110851742.  Google Scholar

[1]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, 2021, 20 (1) : 389-404. doi: 10.3934/cpaa.2020273

[2]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, 2021, 20 (1) : 319-338. doi: 10.3934/cpaa.2020268

[3]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[4]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[5]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[6]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

[7]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[8]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[9]

Manuel Friedrich, Martin Kružík, Jan Valdman. Numerical approximation of von Kármán viscoelastic plates. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 299-319. doi: 10.3934/dcdss.2020322

[10]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

[11]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[12]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[13]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[14]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[15]

Martin Heida, Stefan Neukamm, Mario Varga. Stochastic homogenization of $ \Lambda $-convex gradient flows. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 427-453. doi: 10.3934/dcdss.2020328

[16]

Giulia Luise, Giuseppe Savaré. Contraction and regularizing properties of heat flows in metric measure spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 273-297. doi: 10.3934/dcdss.2020327

[17]

Haiyu Liu, Rongmin Zhu, Yuxian Geng. Gorenstein global dimensions relative to balanced pairs. Electronic Research Archive, 2020, 28 (4) : 1563-1571. doi: 10.3934/era.2020082

[18]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[19]

Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344

[20]

Abdollah Borhanifar, Maria Alessandra Ragusa, Sohrab Valizadeh. High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020355

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (177)
  • HTML views (115)
  • Cited by (1)

Other articles
by authors

[Back to Top]