April  2019, 39(4): 2059-2075. doi: 10.3934/dcds.2019086

Q-entropy for general topological dynamical systems

1. 

School of Mathematical Sciences, Soochow University, Suzhou 215006, Jiangsu, China

2. 

Center for Dynamical Systems and Differential Equation, Soochow University, Suzhou 215006, Jiangsu, China

3. 

Department of Applied Mathematics, Chinese Culture University, Yangmingshan, Taipei, 11114, Taiwan

* Corresponding author: Chih-Chang Ho

Received  April 2018 Revised  September 2018 Published  January 2019

The aim of this paper is to extend the $ q $-entropy from symbolic systems to a general topological dynamical system. Using a (weak) Gibbs measure as the reference measure, this paper defines $ q $-topological entropy and $ q $-metric entropy, then studies basic properties of these entropies. In particular, this paper describes the relations between $ q $-topological entropy and topological pressure for almost additive potentials, and the relations between $ q $-metric entropy and local metric entropy. Although these relations are quite similar to that described in [19], the methods used here need more techniques from the theory of thermodynamic formalism with almost additive potentials.

Citation: Yun Zhao, Wen-Chiao Cheng, Chih-Chang Ho. Q-entropy for general topological dynamical systems. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 2059-2075. doi: 10.3934/dcds.2019086
References:
[1]

L. Barreira, A non-additive thermodynamic formalism and applications to dimension theory of hyperbolic dynamical systems, Dynam. Sys., 16 (1996), 871-927.  doi: 10.1017/S0143385700010117.  Google Scholar

[2]

L. Barreira, Nonadditive thermodynamic formalism: Equilibrium and Gibbs measures, Disc. Contin. Dyn. Syst., 16 (2006), 279-305.  doi: 10.3934/dcds.2006.16.279.  Google Scholar

[3]

L. Barreira and P. Doutor, Almost additive multifractal analysis, J. Math. Pures Appl., 92 (2009), 1-17.  doi: 10.1016/j.matpur.2009.04.006.  Google Scholar

[4]

L. Barreira, Almost additive thermodynamic formalism: Some recent developments, Rev. Math. Phys., 22 (2010), 1147-1179.  doi: 10.1142/S0129055X10004168.  Google Scholar

[5]

R. Bowen, Topological entropy for non-compact sets, Trans. Amer. Math. Soc., 184 (1973), 125-136.  doi: 10.1090/S0002-9947-1973-0338317-X.  Google Scholar

[6]

M. Brin and A. Katok, On local entropy, in Geometric Dynamics (Rio de Janeiro) (Lecture Notes in Mathematics), Spring-Verlag, Berlin-New York, 1007 (1983), 30-38. doi: 10.1007/BFb0061408.  Google Scholar

[7]

Y. CaoD. Feng and W. Huang, The thermodynamic formalism for sub-additive potentials, Discrete Contin. Dyn. Syst., 20 (2008), 639-657.  doi: 10.3934/dcds.2008.20.639.  Google Scholar

[8]

Y. CaoH. Hu and Y. Zhao, Nonadditive measure-theoretic pressure and applications to dimensions of an ergodic measure, Dynam. Sys., 33 (2013), 831-850.  doi: 10.1017/S0143385712000090.  Google Scholar

[9]

V. Climenhaga, Bowen's equation in the non-uniform setting, Dynam. Sys., 31 (2011), 1163-1182.  doi: 10.1017/S0143385710000362.  Google Scholar

[10]

V. Maume-DeschampsB. SchmittM. Urbański and A. Zdunik, Pressure and recurrence, Fund. Math., 178 (2003), 129-141.  doi: 10.4064/fm178-2-3.  Google Scholar

[11]

D. Feng and W. Huang, Lyapunov spectrum of asymptotically sub-additive potentials, Commun. Math. Phys., 297 (2010), 1-43.  doi: 10.1007/s00220-010-1031-x.  Google Scholar

[12]

A. Mummert, The thermodynamic formalism for almost-additive sequences, Discrete Contin. Dyn. Syst., 16 (2006), 435-454.  doi: 10.3934/dcds.2006.16.435.  Google Scholar

[13]

Y. Pesin and B. Pitskel, Topological pressure and the variational principle for noncompact sets, Funct. Anal. Appl., 18 (1984), 307-318.   Google Scholar

[14]

Y. Pesin, Dimension Theory in Dynamical Systems, in Contemporary Views and Applications, University of Chicago Press, Chicago, 1997. doi: 10.7208/chicago/9780226662237.001.0001.  Google Scholar

[15]

Y. Pesin and A. Tempelman, Correlation dimension of measures invariant under group actions, Random and Computational Dynamics, 3 (1995), 137-156.   Google Scholar

[16]

P. Varandas, Correlation decay and recurrence asymptotics for some robust nonuniformly hyperbolic maps, J. Stat. Phys., 133 (2008), 813-839.  doi: 10.1007/s10955-008-9639-3.  Google Scholar

[17]

P. Walters, An Introduction to Ergodic Theory, Springer-Verlag, New York, 1982.  Google Scholar

[18]

M. Yuri, Weak Gibbs measures for certain non-hyperbolic systems, Dynam. Syst., 20 (2000), 1495-1518.  doi: 10.1017/S014338570000081X.  Google Scholar

[19]

Y. Zhao and Y. Pesin, Q-entropy for symbolic dynamical systems, J. Phys. A: Math. Theor., 48 (2015), 494002, 17 pp. doi: 10.1088/1751-8113/48/49/494002.  Google Scholar

[20]

Y. ZhaoL. Zhang and Y. Cao, The asymptotically additive topological pressure on the irregular set for asymptotically additive potentials, Nonlinear Analysis, 74 (2011), 5015-5022.  doi: 10.1016/j.na.2011.04.065.  Google Scholar

show all references

References:
[1]

L. Barreira, A non-additive thermodynamic formalism and applications to dimension theory of hyperbolic dynamical systems, Dynam. Sys., 16 (1996), 871-927.  doi: 10.1017/S0143385700010117.  Google Scholar

[2]

L. Barreira, Nonadditive thermodynamic formalism: Equilibrium and Gibbs measures, Disc. Contin. Dyn. Syst., 16 (2006), 279-305.  doi: 10.3934/dcds.2006.16.279.  Google Scholar

[3]

L. Barreira and P. Doutor, Almost additive multifractal analysis, J. Math. Pures Appl., 92 (2009), 1-17.  doi: 10.1016/j.matpur.2009.04.006.  Google Scholar

[4]

L. Barreira, Almost additive thermodynamic formalism: Some recent developments, Rev. Math. Phys., 22 (2010), 1147-1179.  doi: 10.1142/S0129055X10004168.  Google Scholar

[5]

R. Bowen, Topological entropy for non-compact sets, Trans. Amer. Math. Soc., 184 (1973), 125-136.  doi: 10.1090/S0002-9947-1973-0338317-X.  Google Scholar

[6]

M. Brin and A. Katok, On local entropy, in Geometric Dynamics (Rio de Janeiro) (Lecture Notes in Mathematics), Spring-Verlag, Berlin-New York, 1007 (1983), 30-38. doi: 10.1007/BFb0061408.  Google Scholar

[7]

Y. CaoD. Feng and W. Huang, The thermodynamic formalism for sub-additive potentials, Discrete Contin. Dyn. Syst., 20 (2008), 639-657.  doi: 10.3934/dcds.2008.20.639.  Google Scholar

[8]

Y. CaoH. Hu and Y. Zhao, Nonadditive measure-theoretic pressure and applications to dimensions of an ergodic measure, Dynam. Sys., 33 (2013), 831-850.  doi: 10.1017/S0143385712000090.  Google Scholar

[9]

V. Climenhaga, Bowen's equation in the non-uniform setting, Dynam. Sys., 31 (2011), 1163-1182.  doi: 10.1017/S0143385710000362.  Google Scholar

[10]

V. Maume-DeschampsB. SchmittM. Urbański and A. Zdunik, Pressure and recurrence, Fund. Math., 178 (2003), 129-141.  doi: 10.4064/fm178-2-3.  Google Scholar

[11]

D. Feng and W. Huang, Lyapunov spectrum of asymptotically sub-additive potentials, Commun. Math. Phys., 297 (2010), 1-43.  doi: 10.1007/s00220-010-1031-x.  Google Scholar

[12]

A. Mummert, The thermodynamic formalism for almost-additive sequences, Discrete Contin. Dyn. Syst., 16 (2006), 435-454.  doi: 10.3934/dcds.2006.16.435.  Google Scholar

[13]

Y. Pesin and B. Pitskel, Topological pressure and the variational principle for noncompact sets, Funct. Anal. Appl., 18 (1984), 307-318.   Google Scholar

[14]

Y. Pesin, Dimension Theory in Dynamical Systems, in Contemporary Views and Applications, University of Chicago Press, Chicago, 1997. doi: 10.7208/chicago/9780226662237.001.0001.  Google Scholar

[15]

Y. Pesin and A. Tempelman, Correlation dimension of measures invariant under group actions, Random and Computational Dynamics, 3 (1995), 137-156.   Google Scholar

[16]

P. Varandas, Correlation decay and recurrence asymptotics for some robust nonuniformly hyperbolic maps, J. Stat. Phys., 133 (2008), 813-839.  doi: 10.1007/s10955-008-9639-3.  Google Scholar

[17]

P. Walters, An Introduction to Ergodic Theory, Springer-Verlag, New York, 1982.  Google Scholar

[18]

M. Yuri, Weak Gibbs measures for certain non-hyperbolic systems, Dynam. Syst., 20 (2000), 1495-1518.  doi: 10.1017/S014338570000081X.  Google Scholar

[19]

Y. Zhao and Y. Pesin, Q-entropy for symbolic dynamical systems, J. Phys. A: Math. Theor., 48 (2015), 494002, 17 pp. doi: 10.1088/1751-8113/48/49/494002.  Google Scholar

[20]

Y. ZhaoL. Zhang and Y. Cao, The asymptotically additive topological pressure on the irregular set for asymptotically additive potentials, Nonlinear Analysis, 74 (2011), 5015-5022.  doi: 10.1016/j.na.2011.04.065.  Google Scholar

[1]

Dongkui Ma, Min Wu. Topological pressure and topological entropy of a semigroup of maps. Discrete & Continuous Dynamical Systems - A, 2011, 31 (2) : 545-556. doi: 10.3934/dcds.2011.31.545

[2]

Tao Wang, Yu Huang. Weighted topological and measure-theoretic entropy. Discrete & Continuous Dynamical Systems - A, 2019, 39 (7) : 3941-3967. doi: 10.3934/dcds.2019159

[3]

Richard Sharp. Distortion and entropy for automorphisms of free groups. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 347-363. doi: 10.3934/dcds.2010.26.347

[4]

Katrin Gelfert. Lower bounds for the topological entropy. Discrete & Continuous Dynamical Systems - A, 2005, 12 (3) : 555-565. doi: 10.3934/dcds.2005.12.555

[5]

Jaume Llibre. Brief survey on the topological entropy. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3363-3374. doi: 10.3934/dcdsb.2015.20.3363

[6]

Marc Rauch. Variational principles for the topological pressure of measurable potentials. Discrete & Continuous Dynamical Systems - S, 2017, 10 (2) : 367-394. doi: 10.3934/dcdss.2017018

[7]

Xueting Tian. Topological pressure for the completely irregular set of birkhoff averages. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2745-2763. doi: 10.3934/dcds.2017118

[8]

Piotr Oprocha, Paweł Potorski. Topological mixing, knot points and bounds of topological entropy. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3547-3564. doi: 10.3934/dcdsb.2015.20.3547

[9]

Jane Hawkins, Michael Taylor. The maximal entropy measure of Fatou boundaries. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4421-4431. doi: 10.3934/dcds.2018192

[10]

Boris Hasselblatt, Zbigniew Nitecki, James Propp. Topological entropy for nonuniformly continuous maps. Discrete & Continuous Dynamical Systems - A, 2008, 22 (1&2) : 201-213. doi: 10.3934/dcds.2008.22.201

[11]

Michał Misiurewicz. On Bowen's definition of topological entropy. Discrete & Continuous Dynamical Systems - A, 2004, 10 (3) : 827-833. doi: 10.3934/dcds.2004.10.827

[12]

Erik M. Bollt, Joseph D. Skufca, Stephen J . McGregor. Control entropy: A complexity measure for nonstationary signals. Mathematical Biosciences & Engineering, 2009, 6 (1) : 1-25. doi: 10.3934/mbe.2009.6.1

[13]

Jérôme Buzzi, Sylvie Ruette. Large entropy implies existence of a maximal entropy measure for interval maps. Discrete & Continuous Dynamical Systems - A, 2006, 14 (4) : 673-688. doi: 10.3934/dcds.2006.14.673

[14]

Álvaro Castañeda, Gonzalo Robledo. Dichotomy spectrum and almost topological conjugacy on nonautonomus unbounded difference systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2287-2304. doi: 10.3934/dcds.2018094

[15]

Wen Huang, Zhiren Wang, Guohua Zhang. Möbius disjointness for topological models of ergodic systems with discrete spectrum. Journal of Modern Dynamics, 2019, 14: 277-290. doi: 10.3934/jmd.2019010

[16]

Jan Philipp Schröder. Ergodicity and topological entropy of geodesic flows on surfaces. Journal of Modern Dynamics, 2015, 9: 147-167. doi: 10.3934/jmd.2015.9.147

[17]

Eva Glasmachers, Gerhard Knieper, Carlos Ogouyandjou, Jan Philipp Schröder. Topological entropy of minimal geodesics and volume growth on surfaces. Journal of Modern Dynamics, 2014, 8 (1) : 75-91. doi: 10.3934/jmd.2014.8.75

[18]

Dante Carrasco-Olivera, Roger Metzger Alvan, Carlos Arnoldo Morales Rojas. Topological entropy for set-valued maps. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3461-3474. doi: 10.3934/dcdsb.2015.20.3461

[19]

César J. Niche. Topological entropy of a magnetic flow and the growth of the number of trajectories. Discrete & Continuous Dynamical Systems - A, 2004, 11 (2&3) : 577-580. doi: 10.3934/dcds.2004.11.577

[20]

Yujun Ju, Dongkui Ma, Yupan Wang. Topological entropy of free semigroup actions for noncompact sets. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 995-1017. doi: 10.3934/dcds.2019041

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (86)
  • HTML views (69)
  • Cited by (0)

Other articles
by authors

[Back to Top]