April  2019, 39(4): 2133-2155. doi: 10.3934/dcds.2019089

Memory equations as reduced Markov processes

1. 

Insitut für Mathematik, Humboldt-Universität zu Berlin, Rudower Chaussee 25, D-12489 Berlin, Germany

2. 

Weierstraß-Insitut für Angewandte Analysis und Stochastik, Mohrenstraße 39, D-10117 Berlin, Germany

* Corresponding author: Artur Stephan

Received  May 2018 Revised  October 2018 Published  January 2019

Fund Project: The first author is supported by the Berlin Mathematical School.

A large class of linear memory differential equations in one dimension, where the evolution depends on the whole history, can be equivalently described as a projection of a Markov process living in a higher dimensional space. Starting with such a memory equation, we propose an explicit construction of the corresponding Markov process. From a physical point of view the Markov process can be understood as a change of the type of some quasiparticles along one-way loops. Typically, the arising Markov process does not have the detailed balance property. The method leads to a more realistic modeling of memory equations. Moreover, it carries over the large number of investigation tools for Markov processes to memory equations like the calculation of the equilibrium state. The method can be used for an approximative solution of some degenerate memory equations like delay differential equations.

Citation: Artur Stephan, Holger Stephan. Memory equations as reduced Markov processes. Discrete & Continuous Dynamical Systems, 2019, 39 (4) : 2133-2155. doi: 10.3934/dcds.2019089
References:
[1]

W. Arendt, et al., One-parameter Semigroups of Positive Operators, Springer, 1986. doi: 10.1007/BFb0074922.  Google Scholar

[2] A. Bobrowski, Functional Analysis for Probability and Stochastic Processes, Cambridge University Press, 2005.  doi: 10.1017/CBO9780511614583.  Google Scholar
[3] R. Durrett, Probability: Theory and Examples, Cambridge University Press, 2010.  doi: 10.1017/CBO9780511779398.  Google Scholar
[4]

E. B. Dynkin, Markov Processes, Moscow, 1963.  Google Scholar

[5]

K. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Graduate texts in mathematics, 194. Springer-Verlag, New York, 2000.  Google Scholar

[6]

M. E. Gurtin and A. C. Pipkin, A general theory of heat conduction with finite wave speeds, Arch. Rational Mech. Anal., 31 (1968), 113-126.  doi: 10.1007/BF00281373.  Google Scholar

[7]

J. K. Hale and S. M. V. Lunel, Introduction to Functional Differential Equations, Springer, 1993. doi: 10.1007/978-1-4612-4342-7.  Google Scholar

[8]

U. Hornung and R. E. Showalter, Diffusion models to fractured media, Journal of Mathematical Analysis and Applications, 147 (1990), 69-80.  doi: 10.1016/0022-247X(90)90385-S.  Google Scholar

[9]

A. Khrabustovskyi and H. Stephan, Positivity and time behavior of a general linear evolution system, non-local in space and time, Math. Methods Appl. Sci., (2008), 1809–1834. doi: 10.1002/mma.998.  Google Scholar

[10]

V. Kolmanovskii and A. Myshkis, Introduction to the Theory and Applications of Functional Differential Equations, Mathematics and its Applications, 463. Kluwer Academic Publishers, Dordrecht, 1999. doi: 10.1007/978-94-017-1965-0.  Google Scholar

[11]

M. Peszynska, Analysis of an integro-differential equation arising form modelling of flows with fading memory through fissured media, Journal of Partial Differential Equations, 8 (1995), 159-173.   Google Scholar

[12]

H. Smith, An Introduction to Delay Differential Equations with Applications to the Life Sciences, Springer, New York, 2011. doi: 10.1007/978-1-4419-7646-8.  Google Scholar

[13]

H. Stephan, A dimension-reduced description of general Brownian motion by non-autonomous diffusion-like equations, J. Mathematical Physics Analysis Geometry (MAG), 12 (2005), 187-202.   Google Scholar

[14]

H. Stephan, Lyapunov functions for positive linear evolution problems, ZAMM Z. Angew. Math. Mech., 85 (2005), 766-777.  doi: 10.1002/zamm.200410229.  Google Scholar

[15] B. Yu. Sternin and V. E. Shatalov, Borel-Laplace Transform and Asymptotic Theory: Introduction to Resurgent Analysis, CRC Press, Boca Raton, FL, 1996.   Google Scholar
[16]

L. Tartar, Memory Effects and Homogenization, Arch. Rational Mech. Anal., 111 (1990), 121-133.  doi: 10.1007/BF00375404.  Google Scholar

show all references

References:
[1]

W. Arendt, et al., One-parameter Semigroups of Positive Operators, Springer, 1986. doi: 10.1007/BFb0074922.  Google Scholar

[2] A. Bobrowski, Functional Analysis for Probability and Stochastic Processes, Cambridge University Press, 2005.  doi: 10.1017/CBO9780511614583.  Google Scholar
[3] R. Durrett, Probability: Theory and Examples, Cambridge University Press, 2010.  doi: 10.1017/CBO9780511779398.  Google Scholar
[4]

E. B. Dynkin, Markov Processes, Moscow, 1963.  Google Scholar

[5]

K. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Graduate texts in mathematics, 194. Springer-Verlag, New York, 2000.  Google Scholar

[6]

M. E. Gurtin and A. C. Pipkin, A general theory of heat conduction with finite wave speeds, Arch. Rational Mech. Anal., 31 (1968), 113-126.  doi: 10.1007/BF00281373.  Google Scholar

[7]

J. K. Hale and S. M. V. Lunel, Introduction to Functional Differential Equations, Springer, 1993. doi: 10.1007/978-1-4612-4342-7.  Google Scholar

[8]

U. Hornung and R. E. Showalter, Diffusion models to fractured media, Journal of Mathematical Analysis and Applications, 147 (1990), 69-80.  doi: 10.1016/0022-247X(90)90385-S.  Google Scholar

[9]

A. Khrabustovskyi and H. Stephan, Positivity and time behavior of a general linear evolution system, non-local in space and time, Math. Methods Appl. Sci., (2008), 1809–1834. doi: 10.1002/mma.998.  Google Scholar

[10]

V. Kolmanovskii and A. Myshkis, Introduction to the Theory and Applications of Functional Differential Equations, Mathematics and its Applications, 463. Kluwer Academic Publishers, Dordrecht, 1999. doi: 10.1007/978-94-017-1965-0.  Google Scholar

[11]

M. Peszynska, Analysis of an integro-differential equation arising form modelling of flows with fading memory through fissured media, Journal of Partial Differential Equations, 8 (1995), 159-173.   Google Scholar

[12]

H. Smith, An Introduction to Delay Differential Equations with Applications to the Life Sciences, Springer, New York, 2011. doi: 10.1007/978-1-4419-7646-8.  Google Scholar

[13]

H. Stephan, A dimension-reduced description of general Brownian motion by non-autonomous diffusion-like equations, J. Mathematical Physics Analysis Geometry (MAG), 12 (2005), 187-202.   Google Scholar

[14]

H. Stephan, Lyapunov functions for positive linear evolution problems, ZAMM Z. Angew. Math. Mech., 85 (2005), 766-777.  doi: 10.1002/zamm.200410229.  Google Scholar

[15] B. Yu. Sternin and V. E. Shatalov, Borel-Laplace Transform and Asymptotic Theory: Introduction to Resurgent Analysis, CRC Press, Boca Raton, FL, 1996.   Google Scholar
[16]

L. Tartar, Memory Effects and Homogenization, Arch. Rational Mech. Anal., 111 (1990), 121-133.  doi: 10.1007/BF00375404.  Google Scholar

[1]

Tomás Caraballo, P.E. Kloeden. Non-autonomous attractors for integro-differential evolution equations. Discrete & Continuous Dynamical Systems - S, 2009, 2 (1) : 17-36. doi: 10.3934/dcdss.2009.2.17

[2]

William Guo. The Laplace transform as an alternative general method for solving linear ordinary differential equations. STEM Education, 2021, 1 (4) : 309-329. doi: 10.3934/steme.2021020

[3]

Daoyi Xu, Yumei Huang, Zhiguo Yang. Existence theorems for periodic Markov process and stochastic functional differential equations. Discrete & Continuous Dynamical Systems, 2009, 24 (3) : 1005-1023. doi: 10.3934/dcds.2009.24.1005

[4]

Rafael Obaya, Ana M. Sanz. Persistence in non-autonomous quasimonotone parabolic partial functional differential equations with delay. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3947-3970. doi: 10.3934/dcdsb.2018338

[5]

Sylvia Novo, Carmen Núñez, Rafael Obaya, Ana M. Sanz. Skew-product semiflows for non-autonomous partial functional differential equations with delay. Discrete & Continuous Dynamical Systems, 2014, 34 (10) : 4291-4321. doi: 10.3934/dcds.2014.34.4291

[6]

Ji Shu, Linyan Li, Xin Huang, Jian Zhang. Limiting behavior of fractional stochastic integro-Differential equations on unbounded domains. Mathematical Control & Related Fields, 2021, 11 (4) : 715-737. doi: 10.3934/mcrf.2020044

[7]

Tianling Jin, Jingang Xiong. Schauder estimates for solutions of linear parabolic integro-differential equations. Discrete & Continuous Dynamical Systems, 2015, 35 (12) : 5977-5998. doi: 10.3934/dcds.2015.35.5977

[8]

Olivier Bonnefon, Jérôme Coville, Jimmy Garnier, Lionel Roques. Inside dynamics of solutions of integro-differential equations. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3057-3085. doi: 10.3934/dcdsb.2014.19.3057

[9]

Mohammed Al Horani, Angelo Favini, Hiroki Tanabe. Singular integro-differential equations with applications. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021051

[10]

Stefano Maset. Conditioning and relative error propagation in linear autonomous ordinary differential equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (7) : 2879-2909. doi: 10.3934/dcdsb.2018165

[11]

Cyril Imbert, Sylvia Serfaty. Repeated games for non-linear parabolic integro-differential equations and integral curvature flows. Discrete & Continuous Dynamical Systems, 2011, 29 (4) : 1517-1552. doi: 10.3934/dcds.2011.29.1517

[12]

Kai Liu. On regularity of stochastic convolutions of functional linear differential equations with memory. Discrete & Continuous Dynamical Systems - B, 2020, 25 (4) : 1279-1298. doi: 10.3934/dcdsb.2019220

[13]

Ismael Maroto, Carmen Núñez, Rafael Obaya. Exponential stability for nonautonomous functional differential equations with state-dependent delay. Discrete & Continuous Dynamical Systems - B, 2017, 22 (8) : 3167-3197. doi: 10.3934/dcdsb.2017169

[14]

Olivier Hénot. On polynomial forms of nonlinear functional differential equations. Journal of Computational Dynamics, 2021, 8 (3) : 309-323. doi: 10.3934/jcd.2021013

[15]

Luis Silvestre. Hölder continuity for integro-differential parabolic equations with polynomial growth respect to the gradient. Discrete & Continuous Dynamical Systems, 2010, 28 (3) : 1069-1081. doi: 10.3934/dcds.2010.28.1069

[16]

Kun-Peng Jin, Jin Liang, Ti-Jun Xiao. Uniform polynomial stability of second order integro-differential equations in Hilbert spaces with positive definite kernels. Discrete & Continuous Dynamical Systems - S, 2021, 14 (9) : 3141-3166. doi: 10.3934/dcdss.2021077

[17]

Carmen Núñez, Rafael Obaya. A non-autonomous bifurcation theory for deterministic scalar differential equations. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 701-730. doi: 10.3934/dcdsb.2008.9.701

[18]

Hermann Brunner. The numerical solution of weakly singular Volterra functional integro-differential equations with variable delays. Communications on Pure & Applied Analysis, 2006, 5 (2) : 261-276. doi: 10.3934/cpaa.2006.5.261

[19]

Jiaohui Xu, Tomás Caraballo, José Valero. Asymptotic behavior of nonlocal partial differential equations with long time memory. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021140

[20]

Iacopo P. Longo, Sylvia Novo, Rafael Obaya. Topologies of continuity for Carathéodory delay differential equations with applications in non-autonomous dynamics. Discrete & Continuous Dynamical Systems, 2019, 39 (9) : 5491-5520. doi: 10.3934/dcds.2019224

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (343)
  • HTML views (93)
  • Cited by (0)

Other articles
by authors

[Back to Top]