Rational semigroups were introduced by Hinkkanen and Martin as a generalization of the iteration of a single rational map. There has subsequently been much interest in the study of rational semigroups. Quasiregular semigroups were introduced shortly after rational semigroups as analogues in higher real dimensions, but have received far less attention. Each map in a quasiregular semigroup must necessarily be a uniformly quasiregular map. While there is a completely viable theory for the iteration of uniformly quasiregular maps, it is a highly non-trivial matter to construct them. In this paper, we study properties of the Julia and Fatou sets of quasiregular semigroups and, equally as importantly, give several families of examples illustrating some of the behaviours that can arise.
Citation: |
[1] | A. F. Beardon, Iteration of Rational Functions, Springer, 1991. |
[2] | W. Bergweiler, Iteration of quasiregular mappings, Comput. Methods Funct. Theory, 10 (2010), 455-481. doi: 10.1007/BF03321776. |
[3] | A. Fletcher and D. Macclure, Strongly automorphic mappings and their uniformly quasiregular Julia sets, to appear in J. Anal. Math.. |
[4] | A. Fletcher and D. Nicks, Quasiregular dynamics on the n-sphere, Erg. Th. Dyn. Sys., 31 (2011), 23-31. doi: 10.1017/S0143385709001072. |
[5] | A. Fletcher and D. Nicks, Julia sets of uniformly quasiregular mappings are uniformly perfect, Math. Proc. Cam. Phil. Soc., 151 (2011), 541-550. doi: 10.1017/S0305004111000478. |
[6] | A. Fletcher and J.-M. Wu, Julia sets and wild Cantor sets, Geometriae Dedicata, 174 (2015), 169-176. doi: 10.1007/s10711-014-0010-3. |
[7] | A. Hinkkanen and G. J. Martin, The dynamics of semigroups of rational functions I, Proc. London Math. Soc., 73 (1996), 358-384. doi: 10.1112/plms/s3-73.2.358. |
[8] | A. Hinkkanen, G. Martin and V. Mayer, Local dynamics of uniformly quasiregular mappings, Math. Scand., 95 (2004), 80-100. doi: 10.7146/math.scand.a-14450. |
[9] | T. Iwaniec and G. J. Martin, Quasiregular semigroups, Ann. Acad. Sci. Fenn., 21 (1996), 241-254. |
[10] | T. Iwaniec and G. Martin, Geometric Function Theory and Non-linear Analysis, Oxford University Press, 2001. |
[11] | J. Jaerisch and H. Sumi, Dynamics of infinitely generated nicely expanding rational semigroups and the inducing method, Trans. Amer. Math. Soc., 369 (2017), 6147-6187. doi: 10.1090/tran/6862. |
[12] | G. J. Martin, Quasiconformal and affine groups, J. Diff. Geom., 29 (1989), 427-448. doi: 10.4310/jdg/1214442884. |
[13] | G. J. Martin and K. Peltonen, Stoilow factorization for quasiregular mappings in all dimensions, Proc. Amer. Math. Soc., 138 (2010), 147-151. doi: 10.1090/S0002-9939-09-10056-4. |
[14] | V. Mayer, Uniformly Quasiregular Mappings of Lattès type, Conform. Geom. Dyn., 1 (1997), 104-111. doi: 10.1090/S1088-4173-97-00013-1. |
[15] | V. Mayer, Quasiregular analogues of critically finite rational functions with parabolic orbifold, J. Anal. Math., 75 (1998), 105-119. doi: 10.1007/BF02788694. |
[16] | R. Miniowitz, Normal families of quasimeromorphic mappings, Proc. Amer. Math. Soc., 84 (1982), 35-43. doi: 10.1090/S0002-9939-1982-0633273-X. |
[17] | S. Morosawa, Semigroups whose Julia sets are Cantor targets, Comp. Var. Ell. Eq., 2018. doi: 10.1080/17476933.2018.1481834. |
[18] | S. Rickman, Quasiregular Mappings, Springer-Verlag, 1993. doi: 10.1007/978-3-642-78201-5. |
[19] | H. Siebert, Fixpunkte und normale Familien quasiregul ärer Abbildungen, Dissertation, CAU Kiel, 2004. |
[20] | R. Stankewitz, Uniformly perfect sets, rational semigroups, Kleinian groups and IFS's, Proc. Amer. Math. Soc., 128 (2000), 2569-2575. doi: 10.1090/S0002-9939-00-05313-2. |
[21] | H. Sumi, On dynamics of hyperbolic rational semigroups, J. Math. Kyoto Univ., 37 (1997), 717-733. doi: 10.1215/kjm/1250518211. |
[22] | P. Tukia and J. Väisäla, Lipschitz and quasiconformal approximation and extension, Ann. Acad. Sci. Fenn. Ser. A I Math., 6 (1981), 303-342. doi: 10.5186/aasfm.1981.0626. |
[23] | M. Vuorinen, Conformal Geometry and Quasiregular Mappings, Springer-Verlag, 1988. doi: 10.1007/BFb0077904. |