In the present paper it is designed a simple, finite-dimensional, linear deterministic stabilizing boundary feedback law for the stochastic Burgers equation with unbounded time-dependent coefficients. The stability of the system is guaranteed no matter how large the level of the noise is.
Citation: |
[1] |
V. Barbu and M. Rockner, Global solutions to random 3D vorticity equations for small initial data, J. Diff. Equations, 263 (2017), 5395-5411.
doi: 10.1016/j.jde.2017.06.020.![]() ![]() ![]() |
[2] |
V. Barbu, Boundary stabilization of equilibrium solutions to parabolic equations, IEEE Trans. Autom. Control, 58 (2013), 2416-2420.
doi: 10.1109/TAC.2013.2254013.![]() ![]() |
[3] |
V. Barbu and G. Da Prato, Internal stabilization by noise of the Navier–Stokes equation, SIAM J. Control Optimiz., 49(1) (2012), 1-0.
![]() |
[4] |
V. Barbu, Viorel, I. Lasiecka and R. Triggiani, Tangential boundary stabilization of Navier-Stokes equations, Mem. Amer. Math. Soc., 181 (2006), x+128 pp.
doi: 10.1090/memo/0852.![]() ![]() ![]() |
[5] |
V. Barbu, I. Lasiecka and R. Triggiani, Abstract settings for tangential boundary stabilization of Navier-Stokes equations by high- and low-gain feedback controllers, Nonlinear Anal., 64 (2006), 2704-2746.
doi: 10.1016/j.na.2005.09.012.![]() ![]() ![]() |
[6] |
T. A. Burton, Stability by Fixed Point Theory for Functional Differential Equations, Dover Publications, Inc., New York, 2006.
![]() |
[7] |
H. Choi, R. Temam, P. Moin and J. Kim, Feedback control for unsteady flow and its application to the stochastic Burgers equation, J. Fluid Mech., 253 (1993), 509-543.
doi: 10.1017/S0022112093001880.![]() ![]() ![]() |
[8] |
G. Da Prato and A. Debussche, Dynamic programming for the stochastic Burgers equation, Ann. Mat. Pura Appl., 178 (2000), 143-174.
doi: 10.1007/BF02505893.![]() ![]() ![]() |
[9] |
G. Da Prato and A. Debussche, Control of the stochastic Burgers model of turbulence, SIAM J. Control Optimiz., 37 (1999), 1123-1149.
doi: 10.1137/S0363012996311307.![]() ![]() |
[10] |
G. Da Prato, A. Debussche and R. Temam, Stochastic Burgers' equation, Nonlin. Diff. Equations Appl., 1 (1994), 389-402.
doi: 10.1007/BF01194987.![]() ![]() ![]() |
[11] |
M. Foondun and E. Nualart, On the behaviour of stochastic heat equations on bounded domains, Latin Amer. J. Probab. Math. Statistics, 12 (2015), 551-571.
![]() ![]() |
[12] |
I. Gyongy and D. Nualart, On the stochastic Burgers equation in the real line, Annals of Probab., 27 (1999), 782-802.
doi: 10.1214/aop/1022677386.![]() ![]() ![]() |
[13] |
M. Krstic, On global stabilization of Burgers' equation by boundary control, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171), (1998).
doi: 10.1109/CDC.1998.758248.![]() ![]() |
[14] |
W.-J. Liu and M. Krstic, Backstepping boundary control of Burgers equation with actuator dynamics, Syst. Control Lett., 41 (2000), 291-303.
doi: 10.1016/S0167-6911(00)00068-2.![]() ![]() ![]() |
[15] |
H. Liu, P. Hu and I. Munteanu, Boundary feedback stabilization of Fisher's equation, Syst. Control Lett., 97 (2016), 55-60.
doi: 10.1016/j.sysconle.2016.09.003.![]() ![]() ![]() |
[16] |
J. Luo, Fixed points and exponential stability of mild solutions of stochastic partial differential equations with delays, J. Math. Anal. Appl., 342 (2008), 753-760.
doi: 10.1016/j.jmaa.2007.11.019.![]() ![]() ![]() |
[17] |
I. Munteanu, Boundary stabilization of the stochastic heat equation by proportional feedbacks, Automatica, 87 (2018), 152-158.
doi: 10.1016/j.automatica.2017.10.003.![]() ![]() ![]() |
[18] |
I. Munteanu, Boundary stabilisation to non-stationary solutions for deterministic and stochastic parabolic-type equations, Int. J. Control, 2017.
doi: 10.1080/00207179.2017.1407878.![]() ![]() |
[19] |
I. Munteanu, Stabilisation of parabolic semilinear equations, Int. J. Control, 90 (2017), 1063-1076.
doi: 10.1080/00207179.2016.1200747.![]() ![]() ![]() |
[20] |
I. Munteanu, Boundary stabilization of the phase field system by finite-dimensional feedback controllers, J. Math. Anal. Appl., 412 (2014), 964-975.
doi: 10.1016/j.jmaa.2013.11.018.![]() ![]() ![]() |
[21] |
I. Munteanu, Boundary stabilization of the Navier–Stokes equation with fading memory, Int. J. Control, 88 (2015), 531-542.
doi: 10.1080/00207179.2014.964780.![]() ![]() ![]() |
[22] |
I. Munteanu, Stabilization of semilinear heat equations, with fading memory, by boundary feedbacks, J. Diff. Equations, 259 (2015), 454-472.
doi: 10.1016/j.jde.2015.02.010.![]() ![]() ![]() |
[23] |
I. Munteanu, Boundary stabilization of a 2-D periodic MHD channel flow, by proportional feedbacks, ESAIM: COCV, 23 (2017), 1253-1266.
doi: 10.1051/cocv/2016025.![]() ![]() ![]() |
[24] |
I. Munteanu, Stabilization of a 3-D periodic channel flow by explicit normal boundary feedbacks, J. Dynam. Control Syst., 23 (2017), 387-403.
doi: 10.1007/s10883-016-9332-9.![]() ![]() ![]() |