In the present paper it is designed a simple, finite-dimensional, linear deterministic stabilizing boundary feedback law for the stochastic Burgers equation with unbounded time-dependent coefficients. The stability of the system is guaranteed no matter how large the level of the noise is.
Citation: |
[1] | V. Barbu and M. Rockner, Global solutions to random 3D vorticity equations for small initial data, J. Diff. Equations, 263 (2017), 5395-5411. doi: 10.1016/j.jde.2017.06.020. |
[2] | V. Barbu, Boundary stabilization of equilibrium solutions to parabolic equations, IEEE Trans. Autom. Control, 58 (2013), 2416-2420. doi: 10.1109/TAC.2013.2254013. |
[3] | V. Barbu and G. Da Prato, Internal stabilization by noise of the Navier–Stokes equation, SIAM J. Control Optimiz., 49(1) (2012), 1-0. |
[4] | V. Barbu, Viorel, I. Lasiecka and R. Triggiani, Tangential boundary stabilization of Navier-Stokes equations, Mem. Amer. Math. Soc., 181 (2006), x+128 pp. doi: 10.1090/memo/0852. |
[5] | V. Barbu, I. Lasiecka and R. Triggiani, Abstract settings for tangential boundary stabilization of Navier-Stokes equations by high- and low-gain feedback controllers, Nonlinear Anal., 64 (2006), 2704-2746. doi: 10.1016/j.na.2005.09.012. |
[6] | T. A. Burton, Stability by Fixed Point Theory for Functional Differential Equations, Dover Publications, Inc., New York, 2006. |
[7] | H. Choi, R. Temam, P. Moin and J. Kim, Feedback control for unsteady flow and its application to the stochastic Burgers equation, J. Fluid Mech., 253 (1993), 509-543. doi: 10.1017/S0022112093001880. |
[8] | G. Da Prato and A. Debussche, Dynamic programming for the stochastic Burgers equation, Ann. Mat. Pura Appl., 178 (2000), 143-174. doi: 10.1007/BF02505893. |
[9] | G. Da Prato and A. Debussche, Control of the stochastic Burgers model of turbulence, SIAM J. Control Optimiz., 37 (1999), 1123-1149. doi: 10.1137/S0363012996311307. |
[10] | G. Da Prato, A. Debussche and R. Temam, Stochastic Burgers' equation, Nonlin. Diff. Equations Appl., 1 (1994), 389-402. doi: 10.1007/BF01194987. |
[11] | M. Foondun and E. Nualart, On the behaviour of stochastic heat equations on bounded domains, Latin Amer. J. Probab. Math. Statistics, 12 (2015), 551-571. |
[12] | I. Gyongy and D. Nualart, On the stochastic Burgers equation in the real line, Annals of Probab., 27 (1999), 782-802. doi: 10.1214/aop/1022677386. |
[13] | M. Krstic, On global stabilization of Burgers' equation by boundary control, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171), (1998). doi: 10.1109/CDC.1998.758248. |
[14] | W.-J. Liu and M. Krstic, Backstepping boundary control of Burgers equation with actuator dynamics, Syst. Control Lett., 41 (2000), 291-303. doi: 10.1016/S0167-6911(00)00068-2. |
[15] | H. Liu, P. Hu and I. Munteanu, Boundary feedback stabilization of Fisher's equation, Syst. Control Lett., 97 (2016), 55-60. doi: 10.1016/j.sysconle.2016.09.003. |
[16] | J. Luo, Fixed points and exponential stability of mild solutions of stochastic partial differential equations with delays, J. Math. Anal. Appl., 342 (2008), 753-760. doi: 10.1016/j.jmaa.2007.11.019. |
[17] | I. Munteanu, Boundary stabilization of the stochastic heat equation by proportional feedbacks, Automatica, 87 (2018), 152-158. doi: 10.1016/j.automatica.2017.10.003. |
[18] | I. Munteanu, Boundary stabilisation to non-stationary solutions for deterministic and stochastic parabolic-type equations, Int. J. Control, 2017. doi: 10.1080/00207179.2017.1407878. |
[19] | I. Munteanu, Stabilisation of parabolic semilinear equations, Int. J. Control, 90 (2017), 1063-1076. doi: 10.1080/00207179.2016.1200747. |
[20] | I. Munteanu, Boundary stabilization of the phase field system by finite-dimensional feedback controllers, J. Math. Anal. Appl., 412 (2014), 964-975. doi: 10.1016/j.jmaa.2013.11.018. |
[21] | I. Munteanu, Boundary stabilization of the Navier–Stokes equation with fading memory, Int. J. Control, 88 (2015), 531-542. doi: 10.1080/00207179.2014.964780. |
[22] | I. Munteanu, Stabilization of semilinear heat equations, with fading memory, by boundary feedbacks, J. Diff. Equations, 259 (2015), 454-472. doi: 10.1016/j.jde.2015.02.010. |
[23] | I. Munteanu, Boundary stabilization of a 2-D periodic MHD channel flow, by proportional feedbacks, ESAIM: COCV, 23 (2017), 1253-1266. doi: 10.1051/cocv/2016025. |
[24] | I. Munteanu, Stabilization of a 3-D periodic channel flow by explicit normal boundary feedbacks, J. Dynam. Control Syst., 23 (2017), 387-403. doi: 10.1007/s10883-016-9332-9. |