
-
Previous Article
Prescribing the $ Q' $-curvature in three dimension
- DCDS Home
- This Issue
-
Next Article
Construction solutions for Neumann problem with Hénon term in $ \mathbb{R}^2 $
On smoothness of solutions to projected differential equations
1. | Lab. PROMES UPR CNRS 8521, Université de Perpignan Via Domitia, Rambla de la Thermodynamique, Tecnosud, F- 66100 Perpignan, France |
2. | Institut Montpelliérain Alexander Grothendieck, Université de Montpellier, 163 rue Auguste Broussonnet, 34090 Montpellier, France |
3. | Instituto de Ciencias de la Educación, Universidad de O'Higgins, Av. Libertador Bernardo O'Higgins 611, Rancagua, Chile |
Projected differential equations are known as fundamental mathematical models in economics, for electric circuits, etc. The present paper studies the (higher order) derivability as well as a generalized type of derivability of solutions of such equations when the set involved for projections is prox-regular with smooth boundary.
References:
[1] |
V. Acary, O. Bonnefon and B. Brogliato, Nonsmooth Modeling and Simulation for Switched Circuits, Springer, 2011.
doi: 10.1007/978-90-481-9681-4. |
[2] |
S. Adly and L. Bourdin,
Sensitivity analysis of variational inequalities via twice epi-differentiability and proto-differentiability of the proximity operator, SIAM J. Optim., 28 (2018), 1699-1725.
doi: 10.1137/17M1135013. |
[3] |
C. Arroud and G. Colombo,
A maximum principle for the controlled sweeping process, Set-Valued Var. Anal., 26 (2018), 607-629.
doi: 10.1007/s11228-017-0400-4. |
[4] |
J.-P. Aubin, Viability Theory, Systems & Control: Foundations & Applications, Birkhäuser Boston, Inc., Boston, MA, 1991. |
[5] |
J.-P. Bressoud and A. Cellina, Differential Inclusions: Set-Valued Maps and Viability Theory, Springer-Verlag, Berlin, 1984.
doi: 10.1007/978-3-642-69512-4.![]() ![]() ![]() |
[6] |
D. Bressoud, A Radical Approach to Lebesgue's Theory of Integration, Cambridge University Press, Cambridge, 2008.
![]() ![]() |
[7] |
B. Brogliato and L. Thibault,
Existence and uniqueness of solutions for non-autonomous complementary dynamical systems, J. Convex Anal., 17 (2010), 961-990.
|
[8] |
M. Brokate and P. Krejčí,
Optimal control of ODE systems involving a rate independent variational inequality, Discrete Continuous Dynam. Systems - B, 18 (2013), 331-348.
doi: 10.3934/dcdsb.2013.18.331. |
[9] |
T. H. Cao and B. Mordukhovich,
Optimal control of a perturbed sweeping process via discrete approximations, Discrete Continuous Dynam. Systems - B, 21 (2016), 3331-3358.
doi: 10.3934/dcdsb.2016100. |
[10] |
T. H. Cao and B. Mordukhovich,
Optimality conditions for a controlled sweeping process with applications to the crowd motion model, Discrete Continuous Dynam. Systems - B, 22 (2017), 267-306.
doi: 10.3934/dcdsb.2017014. |
[11] |
T. H. Cao and B. Mordukhovich, Optimal control of a nonconvex perturbed sweeping process, J. Differential Equations, in Press (2018). |
[12] |
C. Christof and G. Wachsmuth, Differential sensitivity analysis of variational inequalities with locally Lipschitz continuous solution operators, preprint, arXiv: 1711.02720 |
[13] |
F. H. Clarke, Y. S. Ledyaev, R. J. Stern and P. R. Wolenski, Nonsmooth Analysis and Control Theory, Springer, New York, 1998. |
[14] |
M.-G. Cojocaru and L.-B. Jonker,
Existence of solutions to projected differential equations in Hilbert spaces, Proc. Amer. Math. Soc., 132 (2004), 183-193.
doi: 10.1090/S0002-9939-03-07015-1. |
[15] |
G. Colombo, R. Henrion, N. Hoang and B. Mordukhovich,
Optimal control of the sweeping process, Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms, 19 (2012), 117-159.
|
[16] |
G. Colombo, R. Henrion, N. Hoang and B. Mordukhovich,
Discrete approximations of a controlled sweeping process, Set-Valued Var. Anal., 23 (2015), 69-86.
doi: 10.1007/s11228-014-0299-y. |
[17] |
G. Colombo, R. Henrion, N. Hoang and B. Mordukhovich,
Optimal control of the sweeping process over polyhedral controlled sets, J. Differential Equations, 260 (2016), 3397-3447.
doi: 10.1016/j.jde.2015.10.039. |
[18] |
G. Colombo and L. Thibault, Prox-regular sets and applications, in Handbook of Nonconvex Analysis and Applications (eds. D. Gao and D. Motreanu), International Press, Somerville, Mass, (2010), 99-182. |
[19] |
B. Cornet,
Existence of slow solutions for a class of differential inclusions, J. Math. Anal. Appl., 96 (1983), 130-147.
doi: 10.1016/0022-247X(83)90032-X. |
[20] |
R. Correa, D. Salas and L. Thibault,
Smoothness of the metric projection onto nonconvex bodies in Hilbert spaces, J. Math. Anal. Appl., 457 (2018), 1307-1322.
doi: 10.1016/j.jmaa.2016.08.064. |
[21] |
J.-F. Edmond and L. Thibault,
Relaxation of an optimal control problem involving a perturbed sweeping process, Math. Program. Ser. B, 104 (2005), 347-373.
doi: 10.1007/s10107-005-0619-y. |
[22] |
G. Folland, Introduction to Partial Differential Equations, Princeton University Press, Princeton, N.J, 1995.
![]() ![]() |
[23] |
C. Henry,
An existence theorem for a class of differential equations with multivalued right-hand side, J. Math. Anal. Appl., 41 (1973), 179-186.
doi: 10.1016/0022-247X(73)90192-3. |
[24] |
P. Krejčí, Hysteresis, Convexity and Dissipation in Hyperbolic Equations, Volume 8 of GAKUTO Internat. Ser. Math. Sci. Appl., Gakkōtosho Co., Ltd., Tokyo, 1996. |
[25] |
J. Lee, Introduction to Smooth Manifolds, Springer, New York London, 2013. |
[26] |
B. Maury and J. Venel,
Un modéle de mouvements de foule, ESAIM Proc., 18 (2007), 143-152.
doi: 10.1051/proc:071812. |
[27] |
B. Mordukhovich,
Variational analysis and optimization of sweeping processes with controlled moving sets, Invest. Oper., 39 (2018), 283-302.
|
[28] |
B. Mordukhovich, Variational Analysis and Generalized Differentiation, I: Basic Theory; II: Application, Springer, Berlin New York, 2006. |
[29] |
J.-J. Moreau, Rafle par un convexe variable Ⅰ, expo. 15, Sém, Anal. Conv. Mont., (1971), 1-43. |
[30] |
J. Nash,
Real Algebraic Manifolds, Ann. of Math., 56 (1952), 405-421.
doi: 10.2307/1969649. |
[31] |
R. A. Poliquin, R. T. Rockafellar and L. Thibault,
Local differentiability of distance functions, Trans. Amer. Math. Soc., 352 (2000), 5231-5249.
doi: 10.1090/S0002-9947-00-02550-2. |
[32] |
D. Salas and L. Thibault, Characterizations of nonconvex sets with smooth boundary in terms of the metric projection in Hilbert spaces, preprint. |
[33] |
L. Thibault,
Sweeping process with regular and nonregular sets, J. Differential Equations, 193 (2003), 1-26.
doi: 10.1016/S0022-0396(03)00129-3. |
[34] |
A. Tolstonogov,
Control sweeping processes, J. Convex Anal., 23 (2016), 1099-1123.
|
[35] |
H. Toruńczyk,
Smooth partitions of unity on some non-separable Banach spaces, Studia Math., 46 (1973), 43-51.
doi: 10.4064/sm-46-1-43-51. |
show all references
References:
[1] |
V. Acary, O. Bonnefon and B. Brogliato, Nonsmooth Modeling and Simulation for Switched Circuits, Springer, 2011.
doi: 10.1007/978-90-481-9681-4. |
[2] |
S. Adly and L. Bourdin,
Sensitivity analysis of variational inequalities via twice epi-differentiability and proto-differentiability of the proximity operator, SIAM J. Optim., 28 (2018), 1699-1725.
doi: 10.1137/17M1135013. |
[3] |
C. Arroud and G. Colombo,
A maximum principle for the controlled sweeping process, Set-Valued Var. Anal., 26 (2018), 607-629.
doi: 10.1007/s11228-017-0400-4. |
[4] |
J.-P. Aubin, Viability Theory, Systems & Control: Foundations & Applications, Birkhäuser Boston, Inc., Boston, MA, 1991. |
[5] |
J.-P. Bressoud and A. Cellina, Differential Inclusions: Set-Valued Maps and Viability Theory, Springer-Verlag, Berlin, 1984.
doi: 10.1007/978-3-642-69512-4.![]() ![]() ![]() |
[6] |
D. Bressoud, A Radical Approach to Lebesgue's Theory of Integration, Cambridge University Press, Cambridge, 2008.
![]() ![]() |
[7] |
B. Brogliato and L. Thibault,
Existence and uniqueness of solutions for non-autonomous complementary dynamical systems, J. Convex Anal., 17 (2010), 961-990.
|
[8] |
M. Brokate and P. Krejčí,
Optimal control of ODE systems involving a rate independent variational inequality, Discrete Continuous Dynam. Systems - B, 18 (2013), 331-348.
doi: 10.3934/dcdsb.2013.18.331. |
[9] |
T. H. Cao and B. Mordukhovich,
Optimal control of a perturbed sweeping process via discrete approximations, Discrete Continuous Dynam. Systems - B, 21 (2016), 3331-3358.
doi: 10.3934/dcdsb.2016100. |
[10] |
T. H. Cao and B. Mordukhovich,
Optimality conditions for a controlled sweeping process with applications to the crowd motion model, Discrete Continuous Dynam. Systems - B, 22 (2017), 267-306.
doi: 10.3934/dcdsb.2017014. |
[11] |
T. H. Cao and B. Mordukhovich, Optimal control of a nonconvex perturbed sweeping process, J. Differential Equations, in Press (2018). |
[12] |
C. Christof and G. Wachsmuth, Differential sensitivity analysis of variational inequalities with locally Lipschitz continuous solution operators, preprint, arXiv: 1711.02720 |
[13] |
F. H. Clarke, Y. S. Ledyaev, R. J. Stern and P. R. Wolenski, Nonsmooth Analysis and Control Theory, Springer, New York, 1998. |
[14] |
M.-G. Cojocaru and L.-B. Jonker,
Existence of solutions to projected differential equations in Hilbert spaces, Proc. Amer. Math. Soc., 132 (2004), 183-193.
doi: 10.1090/S0002-9939-03-07015-1. |
[15] |
G. Colombo, R. Henrion, N. Hoang and B. Mordukhovich,
Optimal control of the sweeping process, Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms, 19 (2012), 117-159.
|
[16] |
G. Colombo, R. Henrion, N. Hoang and B. Mordukhovich,
Discrete approximations of a controlled sweeping process, Set-Valued Var. Anal., 23 (2015), 69-86.
doi: 10.1007/s11228-014-0299-y. |
[17] |
G. Colombo, R. Henrion, N. Hoang and B. Mordukhovich,
Optimal control of the sweeping process over polyhedral controlled sets, J. Differential Equations, 260 (2016), 3397-3447.
doi: 10.1016/j.jde.2015.10.039. |
[18] |
G. Colombo and L. Thibault, Prox-regular sets and applications, in Handbook of Nonconvex Analysis and Applications (eds. D. Gao and D. Motreanu), International Press, Somerville, Mass, (2010), 99-182. |
[19] |
B. Cornet,
Existence of slow solutions for a class of differential inclusions, J. Math. Anal. Appl., 96 (1983), 130-147.
doi: 10.1016/0022-247X(83)90032-X. |
[20] |
R. Correa, D. Salas and L. Thibault,
Smoothness of the metric projection onto nonconvex bodies in Hilbert spaces, J. Math. Anal. Appl., 457 (2018), 1307-1322.
doi: 10.1016/j.jmaa.2016.08.064. |
[21] |
J.-F. Edmond and L. Thibault,
Relaxation of an optimal control problem involving a perturbed sweeping process, Math. Program. Ser. B, 104 (2005), 347-373.
doi: 10.1007/s10107-005-0619-y. |
[22] |
G. Folland, Introduction to Partial Differential Equations, Princeton University Press, Princeton, N.J, 1995.
![]() ![]() |
[23] |
C. Henry,
An existence theorem for a class of differential equations with multivalued right-hand side, J. Math. Anal. Appl., 41 (1973), 179-186.
doi: 10.1016/0022-247X(73)90192-3. |
[24] |
P. Krejčí, Hysteresis, Convexity and Dissipation in Hyperbolic Equations, Volume 8 of GAKUTO Internat. Ser. Math. Sci. Appl., Gakkōtosho Co., Ltd., Tokyo, 1996. |
[25] |
J. Lee, Introduction to Smooth Manifolds, Springer, New York London, 2013. |
[26] |
B. Maury and J. Venel,
Un modéle de mouvements de foule, ESAIM Proc., 18 (2007), 143-152.
doi: 10.1051/proc:071812. |
[27] |
B. Mordukhovich,
Variational analysis and optimization of sweeping processes with controlled moving sets, Invest. Oper., 39 (2018), 283-302.
|
[28] |
B. Mordukhovich, Variational Analysis and Generalized Differentiation, I: Basic Theory; II: Application, Springer, Berlin New York, 2006. |
[29] |
J.-J. Moreau, Rafle par un convexe variable Ⅰ, expo. 15, Sém, Anal. Conv. Mont., (1971), 1-43. |
[30] |
J. Nash,
Real Algebraic Manifolds, Ann. of Math., 56 (1952), 405-421.
doi: 10.2307/1969649. |
[31] |
R. A. Poliquin, R. T. Rockafellar and L. Thibault,
Local differentiability of distance functions, Trans. Amer. Math. Soc., 352 (2000), 5231-5249.
doi: 10.1090/S0002-9947-00-02550-2. |
[32] |
D. Salas and L. Thibault, Characterizations of nonconvex sets with smooth boundary in terms of the metric projection in Hilbert spaces, preprint. |
[33] |
L. Thibault,
Sweeping process with regular and nonregular sets, J. Differential Equations, 193 (2003), 1-26.
doi: 10.1016/S0022-0396(03)00129-3. |
[34] |
A. Tolstonogov,
Control sweeping processes, J. Convex Anal., 23 (2016), 1099-1123.
|
[35] |
H. Toruńczyk,
Smooth partitions of unity on some non-separable Banach spaces, Studia Math., 46 (1973), 43-51.
doi: 10.4064/sm-46-1-43-51. |




[1] |
José A. Carrillo, Dejan Slepčev, Lijiang Wu. Nonlocal-interaction equations on uniformly prox-regular sets. Discrete and Continuous Dynamical Systems, 2016, 36 (3) : 1209-1247. doi: 10.3934/dcds.2016.36.1209 |
[2] |
Qianqian Han, Bo Deng, Xiao-Song Yang. The existence of $ \omega $-limit set for a modified Nosé-Hoover oscillator. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022043 |
[3] |
Pablo Amster, Alberto Déboli, Manuel Pinto. Hartman and Nirenberg type results for systems of delay differential equations under $ (\omega,Q) $-periodic conditions. Discrete and Continuous Dynamical Systems - B, 2022, 27 (6) : 3019-3037. doi: 10.3934/dcdsb.2021171 |
[4] |
Christian Aarset, Christian Pötzsche. Bifurcations in periodic integrodifference equations in $ C(\Omega) $ Ⅱ: Discrete torus bifurcations. Communications on Pure and Applied Analysis, 2020, 19 (4) : 1847-1874. doi: 10.3934/cpaa.2020081 |
[5] |
Christian Aarset, Christian Pötzsche. Bifurcations in periodic integrodifference equations in $ C(\Omega) $ I: Analytical results and applications. Discrete and Continuous Dynamical Systems - B, 2021, 26 (1) : 1-60. doi: 10.3934/dcdsb.2020231 |
[6] |
Michal Fečkan, Kui Liu, JinRong Wang. $ (\omega,\mathbb{T}) $-periodic solutions of impulsive evolution equations. Evolution Equations and Control Theory, 2022, 11 (2) : 415-437. doi: 10.3934/eect.2021006 |
[7] |
Pallavi Bedi, Anoop Kumar, Thabet Abdeljawad, Aziz Khan. S-asymptotically $ \omega $-periodic mild solutions and stability analysis of Hilfer fractional evolution equations. Evolution Equations and Control Theory, 2021, 10 (4) : 733-748. doi: 10.3934/eect.2020089 |
[8] |
Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete and Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195 |
[9] |
Olexiy V. Kapustyan, Pavlo O. Kasyanov, José Valero. Chain recurrence and structure of $ \omega $-limit sets of multivalued semiflows. Communications on Pure and Applied Analysis, 2020, 19 (4) : 2197-2217. doi: 10.3934/cpaa.2020096 |
[10] |
Yu-Zhao Wang. $ \mathcal{W}$-Entropy formulae and differential Harnack estimates for porous medium equations on Riemannian manifolds. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2441-2454. doi: 10.3934/cpaa.2018116 |
[11] |
Jingwen Wu, Jintao Hu, Hongjiong Tian. Functionally-fitted block $ \theta $-methods for ordinary differential equations. Discrete and Continuous Dynamical Systems - S, 2020, 13 (9) : 2603-2617. doi: 10.3934/dcdss.2020164 |
[12] |
Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3351-3386. doi: 10.3934/dcdss.2020440 |
[13] |
Luisa Malaguti, Stefania Perrotta, Valentina Taddei. $ L^p $-exact controllability of partial differential equations with nonlocal terms. Evolution Equations and Control Theory, 2021 doi: 10.3934/eect.2021053 |
[14] |
Pablo Amster, Mariel Paula Kuna, Dionicio Santos. Stability, existence and non-existence of $ T $-periodic solutions of nonlinear delayed differential equations with $ \varphi $-Laplacian. Communications on Pure and Applied Analysis, 2022, 21 (8) : 2723-2737. doi: 10.3934/cpaa.2022070 |
[15] |
Vladimir Chepyzhov, Alexei Ilyin, Sergey Zelik. Strong trajectory and global $\mathbf{W^{1,p}}$-attractors for the damped-driven Euler system in $\mathbb R^2$. Discrete and Continuous Dynamical Systems - B, 2017, 22 (5) : 1835-1855. doi: 10.3934/dcdsb.2017109 |
[16] |
Fuzhi Li, Dongmei Xu, Jiali Yu. Regular measurable backward compact random attractor for $ g $-Navier-Stokes equation. Communications on Pure and Applied Analysis, 2020, 19 (6) : 3137-3157. doi: 10.3934/cpaa.2020136 |
[17] |
Chunming Tang, Maozhi Xu, Yanfeng Qi, Mingshuo Zhou. A new class of $ p $-ary regular bent functions. Advances in Mathematics of Communications, 2021, 15 (1) : 55-64. doi: 10.3934/amc.2020042 |
[18] |
Ziling Heng, Dexiang Li, Fenjin Liu, Weiqiong Wang. Infinite families of $ t $-designs and strongly regular graphs from punctured codes. Advances in Mathematics of Communications, 2022 doi: 10.3934/amc.2022043 |
[19] |
Anas Eskif, Julio C. Rebelo. Global rigidity of conjugations for locally non-discrete subgroups of $ {\rm {Diff}}^{\omega} (S^1) $. Journal of Modern Dynamics, 2019, 15: 41-93. doi: 10.3934/jmd.2019013 |
[20] |
Ildoo Kim. An $L_p$-Lipschitz theory for parabolic equations with time measurable pseudo-differential operators. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2751-2771. doi: 10.3934/cpaa.2018130 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]