We consider the dynamics of smooth covering maps of the circle with a single critical point of order greater than $ 1 $. By directly specifying the combinatorics of the critical orbit, we show that for an uncountable number of combinatorial equivalence classes of such maps, there is no periodic attractor nor an ergodic absolutely continuous invariant probability measure.
Citation: |
[1] |
V. I. Arnol'd, Small denominators I. Mapping the circle onto itself, Izv. Akad. Nauk. Math., 25 (1961), 21-86.
![]() ![]() |
[2] |
A. Avila, M. Lyubich and W. de Melo, Regular or stochastic dynamics in real analytic families of unimodal maps, Invent. Math., 154 (2003), 451-550.
doi: 10.1007/s00222-003-0307-6.![]() ![]() ![]() |
[3] |
H. Bruin, J. Rivera-Letelier, W. Shen and S. van Strien, Large derivatives, backward contraction and invariant densities for interval maps, Invent. Math., 172 (2008), 509-533.
doi: 10.1007/s00222-007-0108-4.![]() ![]() ![]() |
[4] |
H. Bruin, W. Shen and S. van Strien, Invariant measures exist without a growth condition, Comm. Math. Phys., 241 (2003), 287-306.
doi: 10.1007/s00220-003-0928-z.![]() ![]() ![]() |
[5] |
P. Collet and J. P. Eckmann, Positive Liapunov exponents and absolute continuity for maps of the interval, Ergodic Theory Dynam. Systems, 3 (1983), 13-46.
doi: 10.1017/S0143385700001802.![]() ![]() ![]() |
[6] |
M. Herman, Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations, Publ. Math. I.H.E.S., 49 (1979), 5-233.
![]() ![]() |
[7] |
F. Hofbauer and G. Keller, Quadratic maps without asymptotic measure, Comm. Math. Phys., 127 (1990), 319-337.
doi: 10.1007/BF02096761.![]() ![]() ![]() |
[8] |
M. Jakobson, Absolutely continuous invariant measures for one-parameter families of one-dimensional maps, Comm. Math. Phys., 81 (1981), 39-88.
doi: 10.1007/BF01941800.![]() ![]() ![]() |
[9] |
S. D. Johnson, Singular measures without restrictive intervals, Comm. Math. Phys., 110 (1987), 173-348.
doi: 10.1007/BF01207362.![]() ![]() ![]() |
[10] |
G. Keller, Exponents, attractors and Hopf decompositions for interval maps, Ergodic Theory Dynam. Systems, 10 (1990), 717-744.
doi: 10.1017/S0143385700005861.![]() ![]() ![]() |
[11] |
M. Lyubich, Almost every real quadratic map is either regular or stochastic, Annals of Math., 156 (2002), 1-78.
doi: 10.2307/3597183.![]() ![]() ![]() |
[12] |
R. Mañé, Hyperbolicity, sinks and measure in one-dimensional dynamics, Comm. Math. Phys., 100 (1985), 495-524.
doi: 10.1007/BF01217727.![]() ![]() ![]() |
[13] |
W. de Melo and S. van Strien, One-dimensional Dynamics. Ergebnisse Der Mathematik und Ihrer Grenzgebiete (3), Springer-Verlag, Berlin, 1993.
doi: 10.1007/978-3-642-78043-1.![]() ![]() ![]() |
[14] |
M. Misiurewicz, Absolutely continuous measures for certain maps of an interval, Inst. Hautes Études Sci. Publ. Math., 53 (1981), 17-51.
![]() ![]() |
[15] |
T. Nowicki and S. van Strien, Invariant measures exist under a summability condition for unimodal maps, Invent. Math., 105 (1991), 123-136.
doi: 10.1007/BF01232258.![]() ![]() ![]() |
[16] |
S. van Strien and E. Vargas, Real bounds, ergodicity and negative Schwarzian for multimodal maps, J. Amer. Math. Soc., 17 (2004), 749-782.
doi: 10.1090/S0894-0347-04-00463-1.![]() ![]() ![]() |
The graph of the critical covering map
The first entry map to the interval
Comparing graphs of the functions
The graph of