The Helmholtz–Hodge decomposition (HHD) is applied to the construction of Lyapunov functions. It is shown that if a stability condition is satisfied, such a decomposition can be chosen so that its potential function is a Lyapunov function. In connection with the Lyapunov function, vector fields with strictly orthogonal HHD are analyzed. It is shown that they are a generalization of gradient vector fields and have similar properties. Finally, to examine the limitations of the proposed method, planar vector fields are analyzed.
Citation: |
[1] |
H. Bhatia, G. Norgard and V. Pascucci, The Helmholtz-Hodge decomposition-a survey, IEEE T. Vis. Comput. Gr., 19 (2013), 1386-1404.
![]() |
[2] |
H. Bhatia, V. Pascucci and P. Bremer, The natural Helmholtz-Hodge decomposition for Open-Boundary flow analysis, IEEE T. Vis. Comput. Gr., 20 (2014), 1566-1578.
doi: 10.1109/TVCG.2014.2312012.![]() ![]() |
[3] |
J. Demongeot, N. Glade and L. Forest, Liénard systems and potential-Hamiltonian decomposition Ⅰ -methodology, C. R. Math., 344 (2007), 121-126.
doi: 10.1016/j.crma.2006.10.016.![]() ![]() ![]() |
[4] |
J. Demongeot, N. Glade and L. Forest, Liénard systems and {potential-Hamiltonian} decomposition Ⅱ -algorithm, C. R. Math., 344 (2007), 191-194.
doi: 10.1016/j.crma.2006.10.013.![]() ![]() ![]() |
[5] |
M. Denaro, On the application of the Helmholtz-Hodge decomposition in projection methods for incompressible flows with general boundary conditions, Int. J. Numer. Methods Fluids, 43 (2003), 43-69.
doi: 10.1002/fld.598.![]() ![]() ![]() |
[6] |
T. Duarte and R. Mendes, Deformation of Hamiltonian dynamics and constants of motion in dissipative systems, J. Math. Phys., 24 (1983), 1772-1778.
doi: 10.1063/1.525894.![]() ![]() ![]() |
[7] |
E. Fuselier and G. Wright, A radial basis function method for computing Helmholtz-Hodge decompositions, IMA J. Numer. Anal., 37 (2017), 774-797.
doi: 10.1093/imanum/drw027.![]() ![]() ![]() |
[8] |
J. Geng and Z. Shen, The Neumann problem and Helmholtz decomposition in convex domains, J. Funct. Anal., 259 (2010), 2147-2164.
doi: 10.1016/j.jfa.2010.07.005.![]() ![]() ![]() |
[9] |
P. Giesl and S. Hafstein, Review on computational methods for Lyapunov functions, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 2291-2331.
doi: 10.3934/dcdsb.2015.20.2291.![]() ![]() ![]() |
[10] |
P. Giesl, Construction of Global Lyapunov Functions Using Radial Basis Functions, Springer–Verlag Berlin Heidelberg, 2007.
![]() ![]() |
[11] |
J. LaSalle, Some extensions of Liapunov's second method, IRE Trans. Circuit Theory, 7 (1960), 520-527.
![]() ![]() |
[12] |
A. Polanski, Lyapunov function construction by linear programming, IEEE Trans. Autom. Control., 42 (1997), 1013-1016.
doi: 10.1109/9.599986.![]() ![]() ![]() |
[13] |
K. Polthier and E. Preuß, Identifying vector field singularities using a discrete Hodge decomposition, Visualization and Mathematics III, 2003, 113–134.
![]() ![]() |
[14] |
C. Robinson, Dynamical Systems: Stability, Symbolic Dynamics, and Chaos, Studies in Advanced Mathematics, CRC-Press, 1999.
![]() ![]() |
[15] |
G. Strang, Linear Algebra and Its Applications, Thomson, Brooks/Cole, 2006.
![]() |
[16] |
A. Wiebel, Feature detection in vector fields using the Helmholtz-Hodge decomposition Diploma-Thesis.,
![]() |
Left: Contours of
Contours of
Solution curves of the vector field (4)
Strictly orthogonal HHD of the vector field (4). Left: solution curves of