We would like to present a general principle for the shrinking target problem in a topological dynamical system. More precisely, let
$ E_y(\{a_n\}) = \bigcap\limits_{\delta>0}\Big\{x\in X: T^nx\in B_{a_n}(y, \delta), \ {\text{for infinitely often}}\ n\in \mathbb N\Big\}, $
the set of points whose orbit can well approximate a given point infinitely often, where
$ h_{\text {top}}(E_y(\{a_n\}), T) = \frac{1}{1+a}h_{\text {top}}(X, T), \ \ {\text{with}}\ a = \liminf\limits_{n\to\infty}\frac{a_n}{n}, $
if the system
Citation: |
[1] |
V. Beresnevich, D. Dickinson and S. Velani, Measure theoretic laws for lim sup sets, Mem. Amer. Math. Soc., 179 (2006), ⅹ+91 pp.
doi: 10.1090/memo/0846.![]() ![]() ![]() |
[2] |
V. Beresnevich and S. Velani, A mass transference principle and the Duffin-Schaeffer conjecture for Hausdorff measures, Ann. of Math. (2), 164 (2006), 971–992.
doi: 10.4007/annals.2006.164.971.![]() ![]() ![]() |
[3] |
A. M. Blokh, Decomposition of dynamical systems on an interval, Usp. Mat. Nauk., 38 (1983), 179-180.
![]() ![]() |
[4] |
R. Bowen, Topological entropy for noncompact sets, Trans. Amer. Math. Soc., 184 (1973), 125-136.
doi: 10.1090/S0002-9947-1973-0338317-X.![]() ![]() ![]() |
[5] |
Y. Bugeaud and B. Wang, Distribution of full cylinders and the Diophantine properties of the orbits in β-expansions, J. Fractal Geom., 1 (2014), 221-241.
doi: 10.4171/JFG/6.![]() ![]() ![]() |
[6] |
J. Buzzi, Specification on the interval, Trans. Amer. Math. Soc., 349 (1997), 2737-2754.
doi: 10.1090/S0002-9947-97-01873-4.![]() ![]() ![]() |
[7] |
N. Chernov and D. Kleinbock, Dynamical Borel-Cantelli lemma for Gibbs measures, Mem. Amer. Math. Soc., 122 (2001), 1-27.
doi: 10.1007/BF02809888.![]() ![]() ![]() |
[8] |
A. Fan, L. Liao and J. Peyrière, Generic points in systems of specification and Banach valued Birkhoff ergodic average, Discrete Contin. Dynam. Syst., 21 (2008), 1103-1128.
doi: 10.3934/dcds.2008.21.1103.![]() ![]() ![]() |
[9] |
A. Fan, J. Schemling and S. Troubetzkoy, A multifractal mass transference principle for Gibbs measures with applications to dynamical Diophantine approximation, Proc. London Math. Soc., 107 (2013), 1173-1219.
doi: 10.1112/plms/pdt005.![]() ![]() ![]() |
[10] |
S. Galatolo, Dimension via waiting time and recurrence, Math. Res. Lett., 12 (2005), 377-386.
doi: 10.4310/MRL.2005.v12.n3.a8.![]() ![]() ![]() |
[11] |
S. Galatolo and D. Kim, The dynamical Borel-Cantelli lemma and the waiting time problems, Indag. Math., 18 (2007), 421-434.
doi: 10.1016/S0019-3577(07)80031-0.![]() ![]() ![]() |
[12] |
R. Hill and S. Velani, The ergodic theory of shrinking targets, Invent. Math., 119 (1995), 175-198.
doi: 10.1007/BF01245179.![]() ![]() ![]() |
[13] |
R. Hill and S. Velani, Metric Diophantine approximation in Julia sets of expanding rational maps, Inst. Hautes Etudes Sci. Publ. Math., 85 (1997), 193-216.
![]() ![]() |
[14] |
D. Kim, The shrinking target property of irrational rotations, Nonlinearity, 20 (2007), 1637-1643.
doi: 10.1088/0951-7715/20/7/006.![]() ![]() ![]() |
[15] |
B. Li, B. Wang, J. Wu and J. Xu, The shrinking target problem in the dynamical system of continued fractions, Proc. Lond. Math. Soc. (3), 108 (2014), 159–186.
doi: 10.1112/plms/pdt017.![]() ![]() ![]() |
[16] |
L. Liao and S. Seuret, Diophantine approximation by orbits in expanding Markov maps, Ergodic Th. Dynam. Systems, 33 (2013), 585-608.
doi: 10.1017/S0143385711001039.![]() ![]() ![]() |
[17] |
W. Parry, On the β-expansions of real numbers, Acta Math. Acad. Sci. Hunger., 11 (1960), 401-416.
doi: 10.1007/BF02020954.![]() ![]() ![]() |
[18] |
Y. B. Pesin, Dimension Theory in Dynamical Systems. Contemporary Views and Applications, University of Chicago Press, Chicago, 1997.
doi: 10.7208/chicago/9780226662237.001.0001.![]() ![]() ![]() |
[19] |
C.-E. Pfister and W. Sullivan, Large deviations estimates for dynamical systems without the specification property. Application to the β-shifts, Nonlinearity, 18 (2005), 237-261.
doi: 10.1088/0951-7715/18/1/013.![]() ![]() ![]() |
[20] |
H. Revee, Shrinking targets for countable Markov maps, arXiv: 1107.4736
![]() |
[21] |
J. Schmeling, Symbolic dynamics for β-shfits and self-normal numbers, Ergod. Th. Dynam. Systems, 17 (1997), 675-694.
doi: 10.1017/S0143385797079182.![]() ![]() ![]() |
[22] |
L. Shen and B. Wang, Shrinking target problems for beta-dynamical system, Sci. China Math., 56 (2013), 91-104.
doi: 10.1007/s11425-012-4478-8.![]() ![]() ![]() |
[23] |
K. Sigmund, On dynamical systems with the specification property, Trans Amer. Math. Soc., 190 (1974), 285-299.
doi: 10.1090/S0002-9947-1974-0352411-X.![]() ![]() ![]() |
[24] |
B. Stratmann and M. Urbański, Jarník and Julia: A Diophantine analysis for parabolic rational maps, Math. Scand., 91 (2002), 27-54.
doi: 10.7146/math.scand.a-14377.![]() ![]() ![]() |
[25] |
F. Takens and E. Verbitskiy, On the variational principle for the topological entropy of certain non-compact sets, Ergod. Th. Dynam. Systems, 23 (2003), 317-348.
doi: 10.1017/S0143385702000913.![]() ![]() ![]() |
[26] |
D. Thompson, Irregular sets, the β-transformation and the almost specification property, Trans. Amer. Math. Soc., 364 (2012), 5395-5414.
doi: 10.1090/S0002-9947-2012-05540-1.![]() ![]() ![]() |
[27] |
M. Urbański, Diophantine analysis of conformal iterated function systems, Monatsh. Math., 137 (2002), 325-340.
doi: 10.1007/s00605-002-0483-2.![]() ![]() ![]() |
[28] |
B. Wang and J. Wu, A survey on the dimensional theory in dynamical Diophantine approximation, in Recent Developments in Fractals and Related Fields, Trends Math., Birkhäuser/Springer, Cham, (2017), 261–294.
![]() ![]() |
[29] |
C. Zhao and E. Chen, Quantitative recurrence properties for systems with non-uniform structure, Taiwanese J. Math., 22 (2018), 225-244.
doi: 10.11650/tjm/8071.![]() ![]() ![]() |