May  2019, 39(5): 2709-2730. doi: 10.3934/dcds.2019113

Global well-posedness for the 2D Boussinesq equations with a velocity damping term

Institute of Mathematics, School of Mathematical Sciences, Nanjing Normal University, Nanjing 210023, China

Received  May 2018 Revised  September 2018 Published  January 2019

In this paper, we prove global well-posedness of smooth solutions to the two-dimensional incompressible Boussinesq equations with only a velocity damping term when the initial data is close to an nontrivial equilibrium state $ (0, x_2) $. As a by-product, under this equilibrium state, our result gives a positive answer to the question proposed by [1] (see P.3597).

Citation: Renhui Wan. Global well-posedness for the 2D Boussinesq equations with a velocity damping term. Discrete & Continuous Dynamical Systems - A, 2019, 39 (5) : 2709-2730. doi: 10.3934/dcds.2019113
References:
[1]

D. AdhikarC. CaoJ. Wu and X. Xu, Small global solutions to the damped two-dimensional Boussinesq equations, J. Differential Equations, 256 (2014), 3594-3613. doi: 10.1016/j.jde.2014.02.012. Google Scholar

[2]

H. Bahouri, J.-Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der mathematischen Wissenschaften, Springer, Heidelberg, 2011. doi: 10.1007/978-3-642-16830-7. Google Scholar

[3]

P. Constantin and C. R. Doering, Infinite Prandtl number convection, J. Stat. Phys., 94 (1999), 159-172. doi: 10.1023/A:1004511312885. Google Scholar

[4]

T. M. Elgindi and K. Widmayer, Sharp decay estimates for an anisotropic linear semigroup and applications to the surface quasi-gepstrophic and inviscid boussinesq systems, SIAM. J. Math. Anal., 47 (2015), 4672-4684. doi: 10.1137/14099036X. Google Scholar

[5] A. E. Gill, Atmosphere-Ocean Dynamics, Academic Press, London, 1982. Google Scholar
[6]

T. Kato and G. Ponce, Commutator estimates and the Euler and Navier- Stokes equations, Comm. Pure Appl. Math., 41 (1988), 891-907. doi: 10.1002/cpa.3160410704. Google Scholar

[7]

C. KenigG. Ponce and L. Vega, Well-posedness of the initial value problem for the Korteweg-de Vries equation, J. Amer. Math. Soc., 4 (1991), 323-347. doi: 10.1090/S0894-0347-1991-1086966-0. Google Scholar

[8]

A. J. Majda, Introduction to PDEs and Waves for the Atmosphere and Ocean, Courant Lect. Notes Math., vol. 9, AMS/CIMS, 2003. doi: 10.1090/cln/009. Google Scholar

[9]

J. Pedlosky, Geoph Geophysical Fluid Dynamics, Springer-Verlag, New York, 1987.Google Scholar

[10]

A. Pekalski and K. Sznajd-Weron (Eds.), Anomalous Diffusion, Form Basics to Applications, Lecture Notes in Phys., vol. 519, Springer-Verlag, Berlin, 1999.Google Scholar

[11]

X. RenJ. WuZ. Xiang and Z. Zhang, Global existence and decay of smooth solution for the 2-D MHD equations without magnetic diffusion, J. Funct. Anal., 267 (2014), 503-541. doi: 10.1016/j.jfa.2014.04.020. Google Scholar

[12]

R. Wan and J. Chen, Global well-posedness for the 2D dispersive SQG equation and inviscid Boussinesq equations, Z. Angew. Math. Phys., 67 (2016), Art. 104, 22 pp. doi: 10.1007/s00033-016-0697-0. Google Scholar

[13]

R. Wan, Global well-posedness of strong solutions to the 2D damped Boussinesq and MHD equations with large velocity, Comm. Math. Sci., 15 (2017), 1617-1626. doi: 10.4310/CMS.2017.v15.n6.a6. Google Scholar

[14]

R. Wan, Long time stability for the dispersive SQG equation and Bousinessq equations in Sobolev space $H^s$, Commun. Contemp. Math., 2018. doi: 10.1142/S0219199718500633. Google Scholar

[15]

J. WuY. Wu and X. Xu, Global small solution to the 2D MHD system with a velocity damping term, SIAM J. Math. Anal., 47 (2015), 2630-2656. doi: 10.1137/140985445. Google Scholar

[16]

J. Wu and Y. Wu, Global small solutions to the compressible 2D magnetohydrodynamic system without magnetic diffusion, Adv. Math., 310 (2017), 759-888. doi: 10.1016/j.aim.2017.02.013. Google Scholar

[17]

J. WuX. Xu and Z. Ye, Global smooth solutions to the $n-$dimensional damped models of incompressible fluid mechanics with small initial datum, J. Nonlinear Sci., 25 (2015), 157-192. doi: 10.1007/s00332-014-9224-7. Google Scholar

show all references

References:
[1]

D. AdhikarC. CaoJ. Wu and X. Xu, Small global solutions to the damped two-dimensional Boussinesq equations, J. Differential Equations, 256 (2014), 3594-3613. doi: 10.1016/j.jde.2014.02.012. Google Scholar

[2]

H. Bahouri, J.-Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der mathematischen Wissenschaften, Springer, Heidelberg, 2011. doi: 10.1007/978-3-642-16830-7. Google Scholar

[3]

P. Constantin and C. R. Doering, Infinite Prandtl number convection, J. Stat. Phys., 94 (1999), 159-172. doi: 10.1023/A:1004511312885. Google Scholar

[4]

T. M. Elgindi and K. Widmayer, Sharp decay estimates for an anisotropic linear semigroup and applications to the surface quasi-gepstrophic and inviscid boussinesq systems, SIAM. J. Math. Anal., 47 (2015), 4672-4684. doi: 10.1137/14099036X. Google Scholar

[5] A. E. Gill, Atmosphere-Ocean Dynamics, Academic Press, London, 1982. Google Scholar
[6]

T. Kato and G. Ponce, Commutator estimates and the Euler and Navier- Stokes equations, Comm. Pure Appl. Math., 41 (1988), 891-907. doi: 10.1002/cpa.3160410704. Google Scholar

[7]

C. KenigG. Ponce and L. Vega, Well-posedness of the initial value problem for the Korteweg-de Vries equation, J. Amer. Math. Soc., 4 (1991), 323-347. doi: 10.1090/S0894-0347-1991-1086966-0. Google Scholar

[8]

A. J. Majda, Introduction to PDEs and Waves for the Atmosphere and Ocean, Courant Lect. Notes Math., vol. 9, AMS/CIMS, 2003. doi: 10.1090/cln/009. Google Scholar

[9]

J. Pedlosky, Geoph Geophysical Fluid Dynamics, Springer-Verlag, New York, 1987.Google Scholar

[10]

A. Pekalski and K. Sznajd-Weron (Eds.), Anomalous Diffusion, Form Basics to Applications, Lecture Notes in Phys., vol. 519, Springer-Verlag, Berlin, 1999.Google Scholar

[11]

X. RenJ. WuZ. Xiang and Z. Zhang, Global existence and decay of smooth solution for the 2-D MHD equations without magnetic diffusion, J. Funct. Anal., 267 (2014), 503-541. doi: 10.1016/j.jfa.2014.04.020. Google Scholar

[12]

R. Wan and J. Chen, Global well-posedness for the 2D dispersive SQG equation and inviscid Boussinesq equations, Z. Angew. Math. Phys., 67 (2016), Art. 104, 22 pp. doi: 10.1007/s00033-016-0697-0. Google Scholar

[13]

R. Wan, Global well-posedness of strong solutions to the 2D damped Boussinesq and MHD equations with large velocity, Comm. Math. Sci., 15 (2017), 1617-1626. doi: 10.4310/CMS.2017.v15.n6.a6. Google Scholar

[14]

R. Wan, Long time stability for the dispersive SQG equation and Bousinessq equations in Sobolev space $H^s$, Commun. Contemp. Math., 2018. doi: 10.1142/S0219199718500633. Google Scholar

[15]

J. WuY. Wu and X. Xu, Global small solution to the 2D MHD system with a velocity damping term, SIAM J. Math. Anal., 47 (2015), 2630-2656. doi: 10.1137/140985445. Google Scholar

[16]

J. Wu and Y. Wu, Global small solutions to the compressible 2D magnetohydrodynamic system without magnetic diffusion, Adv. Math., 310 (2017), 759-888. doi: 10.1016/j.aim.2017.02.013. Google Scholar

[17]

J. WuX. Xu and Z. Ye, Global smooth solutions to the $n-$dimensional damped models of incompressible fluid mechanics with small initial datum, J. Nonlinear Sci., 25 (2015), 157-192. doi: 10.1007/s00332-014-9224-7. Google Scholar

[1]

Thomas Y. Hou, Congming Li. Global well-posedness of the viscous Boussinesq equations. Discrete & Continuous Dynamical Systems - A, 2005, 12 (1) : 1-12. doi: 10.3934/dcds.2005.12.1

[2]

Qunyi Bie, Qiru Wang, Zheng-An Yao. On the well-posedness of the inviscid Boussinesq equations in the Besov-Morrey spaces. Kinetic & Related Models, 2015, 8 (3) : 395-411. doi: 10.3934/krm.2015.8.395

[3]

Xin Zhong. Global well-posedness to the cauchy problem of two-dimensional density-dependent boussinesq equations with large initial data and vacuum. Discrete & Continuous Dynamical Systems - A, 2019, 39 (11) : 6713-6745. doi: 10.3934/dcds.2019292

[4]

Keyan Wang. Global well-posedness for a transport equation with non-local velocity and critical diffusion. Communications on Pure & Applied Analysis, 2008, 7 (5) : 1203-1210. doi: 10.3934/cpaa.2008.7.1203

[5]

Saoussen Sokrani. On the global well-posedness of 3-D Boussinesq system with partial viscosity and axisymmetric data. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 1613-1650. doi: 10.3934/dcds.2019072

[6]

Maxim A. Olshanskii, Leo G. Rebholz, Abner J. Salgado. On well-posedness of a velocity-vorticity formulation of the stationary Navier-Stokes equations with no-slip boundary conditions. Discrete & Continuous Dynamical Systems - A, 2018, 38 (7) : 3459-3477. doi: 10.3934/dcds.2018148

[7]

Elaine Cozzi, James P. Kelliher. Well-posedness of the 2D Euler equations when velocity grows at infinity. Discrete & Continuous Dynamical Systems - A, 2019, 39 (5) : 2361-2392. doi: 10.3934/dcds.2019100

[8]

Luc Molinet, Francis Ribaud. On global well-posedness for a class of nonlocal dispersive wave equations. Discrete & Continuous Dynamical Systems - A, 2006, 15 (2) : 657-668. doi: 10.3934/dcds.2006.15.657

[9]

Igor Chueshov, Alexey Shcherbina. Semi-weak well-posedness and attractors for 2D Schrödinger-Boussinesq equations. Evolution Equations & Control Theory, 2012, 1 (1) : 57-80. doi: 10.3934/eect.2012.1.57

[10]

Caochuan Ma, Zaihong Jiang, Renhui Wan. Local well-posedness for the tropical climate model with fractional velocity diffusion. Kinetic & Related Models, 2016, 9 (3) : 551-570. doi: 10.3934/krm.2016006

[11]

Jihong Zhao, Ting Zhang, Qiao Liu. Global well-posedness for the dissipative system modeling electro-hydrodynamics with large vertical velocity component in critical Besov space. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 555-582. doi: 10.3934/dcds.2015.35.555

[12]

Massimo Cicognani, Michael Reissig. Well-posedness for degenerate Schrödinger equations. Evolution Equations & Control Theory, 2014, 3 (1) : 15-33. doi: 10.3934/eect.2014.3.15

[13]

Sigmund Selberg, Achenef Tesfahun. Global well-posedness of the Chern-Simons-Higgs equations with finite energy. Discrete & Continuous Dynamical Systems - A, 2013, 33 (6) : 2531-2546. doi: 10.3934/dcds.2013.33.2531

[14]

Bin Han, Changhua Wei. Global well-posedness for inhomogeneous Navier-Stokes equations with logarithmical hyper-dissipation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6921-6941. doi: 10.3934/dcds.2016101

[15]

Daniel Coutand, J. Peirce, Steve Shkoller. Global well-posedness of weak solutions for the Lagrangian averaged Navier-Stokes equations on bounded domains. Communications on Pure & Applied Analysis, 2002, 1 (1) : 35-50. doi: 10.3934/cpaa.2002.1.35

[16]

Changxing Miao, Bo Zhang. Global well-posedness of the Cauchy problem for nonlinear Schrödinger-type equations. Discrete & Continuous Dynamical Systems - A, 2007, 17 (1) : 181-200. doi: 10.3934/dcds.2007.17.181

[17]

Tarek Saanouni. A note on global well-posedness and blow-up of some semilinear evolution equations. Evolution Equations & Control Theory, 2015, 4 (3) : 355-372. doi: 10.3934/eect.2015.4.355

[18]

Weimin Peng, Yi Zhou. Global well-posedness of axisymmetric Navier-Stokes equations with one slow variable. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3845-3856. doi: 10.3934/dcds.2016.36.3845

[19]

Tarek Saanouni. Global well-posedness of some high-order semilinear wave and Schrödinger type equations with exponential nonlinearity. Communications on Pure & Applied Analysis, 2014, 13 (1) : 273-291. doi: 10.3934/cpaa.2014.13.273

[20]

Gaocheng Yue, Chengkui Zhong. On the global well-posedness to the 3-D incompressible anisotropic magnetohydrodynamics equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5801-5815. doi: 10.3934/dcds.2016055

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (88)
  • HTML views (97)
  • Cited by (0)

Other articles
by authors

[Back to Top]