May  2019, 39(5): 2709-2730. doi: 10.3934/dcds.2019113

Global well-posedness for the 2D Boussinesq equations with a velocity damping term

Institute of Mathematics, School of Mathematical Sciences, Nanjing Normal University, Nanjing 210023, China

Received  May 2018 Revised  September 2018 Published  January 2019

In this paper, we prove global well-posedness of smooth solutions to the two-dimensional incompressible Boussinesq equations with only a velocity damping term when the initial data is close to an nontrivial equilibrium state $ (0, x_2) $. As a by-product, under this equilibrium state, our result gives a positive answer to the question proposed by [1] (see P.3597).

Citation: Renhui Wan. Global well-posedness for the 2D Boussinesq equations with a velocity damping term. Discrete and Continuous Dynamical Systems, 2019, 39 (5) : 2709-2730. doi: 10.3934/dcds.2019113
References:
[1]

D. AdhikarC. CaoJ. Wu and X. Xu, Small global solutions to the damped two-dimensional Boussinesq equations, J. Differential Equations, 256 (2014), 3594-3613.  doi: 10.1016/j.jde.2014.02.012.

[2]

H. Bahouri, J.-Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der mathematischen Wissenschaften, Springer, Heidelberg, 2011. doi: 10.1007/978-3-642-16830-7.

[3]

P. Constantin and C. R. Doering, Infinite Prandtl number convection, J. Stat. Phys., 94 (1999), 159-172.  doi: 10.1023/A:1004511312885.

[4]

T. M. Elgindi and K. Widmayer, Sharp decay estimates for an anisotropic linear semigroup and applications to the surface quasi-gepstrophic and inviscid boussinesq systems, SIAM. J. Math. Anal., 47 (2015), 4672-4684.  doi: 10.1137/14099036X.

[5] A. E. Gill, Atmosphere-Ocean Dynamics, Academic Press, London, 1982. 
[6]

T. Kato and G. Ponce, Commutator estimates and the Euler and Navier- Stokes equations, Comm. Pure Appl. Math., 41 (1988), 891-907.  doi: 10.1002/cpa.3160410704.

[7]

C. KenigG. Ponce and L. Vega, Well-posedness of the initial value problem for the Korteweg-de Vries equation, J. Amer. Math. Soc., 4 (1991), 323-347.  doi: 10.1090/S0894-0347-1991-1086966-0.

[8]

A. J. Majda, Introduction to PDEs and Waves for the Atmosphere and Ocean, Courant Lect. Notes Math., vol. 9, AMS/CIMS, 2003. doi: 10.1090/cln/009.

[9]

J. Pedlosky, Geoph Geophysical Fluid Dynamics, Springer-Verlag, New York, 1987.

[10]

A. Pekalski and K. Sznajd-Weron (Eds.), Anomalous Diffusion, Form Basics to Applications, Lecture Notes in Phys., vol. 519, Springer-Verlag, Berlin, 1999.

[11]

X. RenJ. WuZ. Xiang and Z. Zhang, Global existence and decay of smooth solution for the 2-D MHD equations without magnetic diffusion, J. Funct. Anal., 267 (2014), 503-541.  doi: 10.1016/j.jfa.2014.04.020.

[12]

R. Wan and J. Chen, Global well-posedness for the 2D dispersive SQG equation and inviscid Boussinesq equations, Z. Angew. Math. Phys., 67 (2016), Art. 104, 22 pp. doi: 10.1007/s00033-016-0697-0.

[13]

R. Wan, Global well-posedness of strong solutions to the 2D damped Boussinesq and MHD equations with large velocity, Comm. Math. Sci., 15 (2017), 1617-1626.  doi: 10.4310/CMS.2017.v15.n6.a6.

[14]

R. Wan, Long time stability for the dispersive SQG equation and Bousinessq equations in Sobolev space $H^s$, Commun. Contemp. Math., 2018. doi: 10.1142/S0219199718500633.

[15]

J. WuY. Wu and X. Xu, Global small solution to the 2D MHD system with a velocity damping term, SIAM J. Math. Anal., 47 (2015), 2630-2656.  doi: 10.1137/140985445.

[16]

J. Wu and Y. Wu, Global small solutions to the compressible 2D magnetohydrodynamic system without magnetic diffusion, Adv. Math., 310 (2017), 759-888.  doi: 10.1016/j.aim.2017.02.013.

[17]

J. WuX. Xu and Z. Ye, Global smooth solutions to the $n-$dimensional damped models of incompressible fluid mechanics with small initial datum, J. Nonlinear Sci., 25 (2015), 157-192.  doi: 10.1007/s00332-014-9224-7.

show all references

References:
[1]

D. AdhikarC. CaoJ. Wu and X. Xu, Small global solutions to the damped two-dimensional Boussinesq equations, J. Differential Equations, 256 (2014), 3594-3613.  doi: 10.1016/j.jde.2014.02.012.

[2]

H. Bahouri, J.-Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der mathematischen Wissenschaften, Springer, Heidelberg, 2011. doi: 10.1007/978-3-642-16830-7.

[3]

P. Constantin and C. R. Doering, Infinite Prandtl number convection, J. Stat. Phys., 94 (1999), 159-172.  doi: 10.1023/A:1004511312885.

[4]

T. M. Elgindi and K. Widmayer, Sharp decay estimates for an anisotropic linear semigroup and applications to the surface quasi-gepstrophic and inviscid boussinesq systems, SIAM. J. Math. Anal., 47 (2015), 4672-4684.  doi: 10.1137/14099036X.

[5] A. E. Gill, Atmosphere-Ocean Dynamics, Academic Press, London, 1982. 
[6]

T. Kato and G. Ponce, Commutator estimates and the Euler and Navier- Stokes equations, Comm. Pure Appl. Math., 41 (1988), 891-907.  doi: 10.1002/cpa.3160410704.

[7]

C. KenigG. Ponce and L. Vega, Well-posedness of the initial value problem for the Korteweg-de Vries equation, J. Amer. Math. Soc., 4 (1991), 323-347.  doi: 10.1090/S0894-0347-1991-1086966-0.

[8]

A. J. Majda, Introduction to PDEs and Waves for the Atmosphere and Ocean, Courant Lect. Notes Math., vol. 9, AMS/CIMS, 2003. doi: 10.1090/cln/009.

[9]

J. Pedlosky, Geoph Geophysical Fluid Dynamics, Springer-Verlag, New York, 1987.

[10]

A. Pekalski and K. Sznajd-Weron (Eds.), Anomalous Diffusion, Form Basics to Applications, Lecture Notes in Phys., vol. 519, Springer-Verlag, Berlin, 1999.

[11]

X. RenJ. WuZ. Xiang and Z. Zhang, Global existence and decay of smooth solution for the 2-D MHD equations without magnetic diffusion, J. Funct. Anal., 267 (2014), 503-541.  doi: 10.1016/j.jfa.2014.04.020.

[12]

R. Wan and J. Chen, Global well-posedness for the 2D dispersive SQG equation and inviscid Boussinesq equations, Z. Angew. Math. Phys., 67 (2016), Art. 104, 22 pp. doi: 10.1007/s00033-016-0697-0.

[13]

R. Wan, Global well-posedness of strong solutions to the 2D damped Boussinesq and MHD equations with large velocity, Comm. Math. Sci., 15 (2017), 1617-1626.  doi: 10.4310/CMS.2017.v15.n6.a6.

[14]

R. Wan, Long time stability for the dispersive SQG equation and Bousinessq equations in Sobolev space $H^s$, Commun. Contemp. Math., 2018. doi: 10.1142/S0219199718500633.

[15]

J. WuY. Wu and X. Xu, Global small solution to the 2D MHD system with a velocity damping term, SIAM J. Math. Anal., 47 (2015), 2630-2656.  doi: 10.1137/140985445.

[16]

J. Wu and Y. Wu, Global small solutions to the compressible 2D magnetohydrodynamic system without magnetic diffusion, Adv. Math., 310 (2017), 759-888.  doi: 10.1016/j.aim.2017.02.013.

[17]

J. WuX. Xu and Z. Ye, Global smooth solutions to the $n-$dimensional damped models of incompressible fluid mechanics with small initial datum, J. Nonlinear Sci., 25 (2015), 157-192.  doi: 10.1007/s00332-014-9224-7.

[1]

Thomas Y. Hou, Congming Li. Global well-posedness of the viscous Boussinesq equations. Discrete and Continuous Dynamical Systems, 2005, 12 (1) : 1-12. doi: 10.3934/dcds.2005.12.1

[2]

Xiaoqiang Dai, Shaohua Chen. Global well-posedness for the Cauchy problem of generalized Boussinesq equations in the control problem regarding initial data. Discrete and Continuous Dynamical Systems - S, 2021, 14 (12) : 4201-4211. doi: 10.3934/dcdss.2021114

[3]

Jiali Lian. Global well-posedness of the free-interface incompressible Euler equations with damping. Discrete and Continuous Dynamical Systems, 2020, 40 (4) : 2061-2087. doi: 10.3934/dcds.2020106

[4]

Qunyi Bie, Qiru Wang, Zheng-An Yao. On the well-posedness of the inviscid Boussinesq equations in the Besov-Morrey spaces. Kinetic and Related Models, 2015, 8 (3) : 395-411. doi: 10.3934/krm.2015.8.395

[5]

Xin Zhong. Global well-posedness to the cauchy problem of two-dimensional density-dependent boussinesq equations with large initial data and vacuum. Discrete and Continuous Dynamical Systems, 2019, 39 (11) : 6713-6745. doi: 10.3934/dcds.2019292

[6]

Keyan Wang. Global well-posedness for a transport equation with non-local velocity and critical diffusion. Communications on Pure and Applied Analysis, 2008, 7 (5) : 1203-1210. doi: 10.3934/cpaa.2008.7.1203

[7]

Adalet Hanachi, Haroune Houamed, Mohamed Zerguine. On the global well-posedness of the axisymmetric viscous Boussinesq system in critical Lebesgue spaces. Discrete and Continuous Dynamical Systems, 2020, 40 (11) : 6473-6506. doi: 10.3934/dcds.2020287

[8]

Saoussen Sokrani. On the global well-posedness of 3-D Boussinesq system with partial viscosity and axisymmetric data. Discrete and Continuous Dynamical Systems, 2019, 39 (4) : 1613-1650. doi: 10.3934/dcds.2019072

[9]

Maxim A. Olshanskii, Leo G. Rebholz, Abner J. Salgado. On well-posedness of a velocity-vorticity formulation of the stationary Navier-Stokes equations with no-slip boundary conditions. Discrete and Continuous Dynamical Systems, 2018, 38 (7) : 3459-3477. doi: 10.3934/dcds.2018148

[10]

Elaine Cozzi, James P. Kelliher. Well-posedness of the 2D Euler equations when velocity grows at infinity. Discrete and Continuous Dynamical Systems, 2019, 39 (5) : 2361-2392. doi: 10.3934/dcds.2019100

[11]

Luc Molinet, Francis Ribaud. On global well-posedness for a class of nonlocal dispersive wave equations. Discrete and Continuous Dynamical Systems, 2006, 15 (2) : 657-668. doi: 10.3934/dcds.2006.15.657

[12]

Huy Tuan Nguyen, Nguyen Anh Tuan, Chao Yang. Global well-posedness for fractional Sobolev-Galpern type equations. Discrete and Continuous Dynamical Systems, 2022, 42 (6) : 2637-2665. doi: 10.3934/dcds.2021206

[13]

Igor Chueshov, Alexey Shcherbina. Semi-weak well-posedness and attractors for 2D Schrödinger-Boussinesq equations. Evolution Equations and Control Theory, 2012, 1 (1) : 57-80. doi: 10.3934/eect.2012.1.57

[14]

Aiting Le, Chenyin Qian. Smoothing effect and well-posedness for 2D Boussinesq equations in critical Sobolev space. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022057

[15]

Caochuan Ma, Zaihong Jiang, Renhui Wan. Local well-posedness for the tropical climate model with fractional velocity diffusion. Kinetic and Related Models, 2016, 9 (3) : 551-570. doi: 10.3934/krm.2016006

[16]

Jihong Zhao, Ting Zhang, Qiao Liu. Global well-posedness for the dissipative system modeling electro-hydrodynamics with large vertical velocity component in critical Besov space. Discrete and Continuous Dynamical Systems, 2015, 35 (1) : 555-582. doi: 10.3934/dcds.2015.35.555

[17]

Alex M. Montes, Ricardo Córdoba. Local well-posedness for a class of 1D Boussinesq systems. Mathematical Control and Related Fields, 2022, 12 (2) : 447-473. doi: 10.3934/mcrf.2021030

[18]

Xuemin Deng, Yuelong Xiao, Aibin Zang. Global well-posedness of the $ n $-dimensional hyper-dissipative Boussinesq system without thermal diffusivity. Communications on Pure and Applied Analysis, 2021, 20 (3) : 1229-1240. doi: 10.3934/cpaa.2021018

[19]

Massimo Cicognani, Michael Reissig. Well-posedness for degenerate Schrödinger equations. Evolution Equations and Control Theory, 2014, 3 (1) : 15-33. doi: 10.3934/eect.2014.3.15

[20]

Sigmund Selberg, Achenef Tesfahun. Global well-posedness of the Chern-Simons-Higgs equations with finite energy. Discrete and Continuous Dynamical Systems, 2013, 33 (6) : 2531-2546. doi: 10.3934/dcds.2013.33.2531

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (275)
  • HTML views (164)
  • Cited by (5)

Other articles
by authors

[Back to Top]