In this paper we consider positive supersolutions of the nonlinear elliptic equation
$ - \Delta u = \rho(x) f(u)|\nabla u|^p, ~~~~ {\rm{ in }}~~~~ \Omega, $
where
$ (N-2)q+p(N-1)< N+\beta. $
Citation: |
[1] |
S. Alarcon, J. Garcia-Melian and A. Quaas, Liouville type theorems for elliptic equations with gradient terms, Milan J. Math., 81 (2013), 171-185.
doi: 10.1007/s00032-013-0197-z.![]() ![]() ![]() |
[2] |
S. Alarcon, J. Garcia-Melian and A. Quaas, Nonexistence of positive supersolutions to some nonlinear elliptic problems, J. Math. Pures Appl., 99 (2013), 618-634.
doi: 10.1016/j.matpur.2012.10.001.![]() ![]() ![]() |
[3] |
S. Alarcon, J. Garcia-Melian and A. Quaas, Existence and non-existence of solutions to elliptic equations with a general convection term, Proc. Roy. Soc. Edinburgh Sect. A, 144 (2014), 225-239.
doi: 10.1017/S030821051200100X.![]() ![]() ![]() |
[4] |
S. Alarcon, J. Garcia-Melian and A. Quaas, Keller-Osserman type conditions for some elliptic problems with gradient terms, J. Differential Equations, 252 (2012), 886-914.
doi: 10.1016/j.jde.2011.09.033.![]() ![]() ![]() |
[5] |
D. Arcoya, C. De Coster, L. Jeanjean and K. Tanaka, Continuum of solutions for an elliptic problem with critical growth in the gradient, J. Funct. Anal., 268 (2015), 2298-2335.
doi: 10.1016/j.jfa.2015.01.014.![]() ![]() ![]() |
[6] |
S. N. Armstrong and B. Sirakov, Nonexistence of positive supersolutions of elliptic equations via the maximum principle, Comm. Part. Diff. Eqns., 36 (2011), 2011-2047.
doi: 10.1080/03605302.2010.534523.![]() ![]() ![]() |
[7] |
S. N. Armstrong and B. Sirakov, Liouville results for fully nonlinear elliptic equations with
power growth nonlinearities, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 10 (2011), 711–728,
arXiv: 1001.4489. [math.AP].
![]() ![]() |
[8] |
H. Berestycki, F. Hamel and N. Nadirashvili, The speed of propagation for KPP type problems Ⅰ. Periodic framework, J. Europ. Math. Soc., 7 (2005), 173-213.
doi: 10.4171/JEMS/26.![]() ![]() ![]() |
[9] |
H. Berestycki, F. Hamel and L. Rossi, Liouville type results for semilinear elliptic equations in unbounded domains, Ann. Mat. Pura Appl., (4) 186 (2007), 469–507.
doi: 10.1007/s10231-006-0015-0.![]() ![]() ![]() |
[10] |
M. F. Bidaut-Veron, M. Garcia-Huidobro and L. Veron, Estimates of solutions of elliptic equations with a source reaction term involving the product of the function and its gradient, available at https://arXiv.org/pdf/1711.11489.pdf
![]() |
[11] |
M. F. Bidaut-Veron, Local and global behavior of solutions of quasilinear equations of EmdenFowler type, Arch. Rat. Mech. Anal., 107 (1989), 293-324.
doi: 10.1007/BF00251552.![]() ![]() ![]() |
[12] |
M. F. Bidaut-Veron, M. Garcia-Huidobro and L. Veron, Local and global behavior of solutions of quasilinear equations of Emden-Fowler type, Calc. Var. Part. Diff. Equ., 54 (2015), 3471-3515.
doi: 10.1007/s00526-015-0911-5.![]() ![]() ![]() |
[13] |
I. Birindelli and F. Demengel, Comparison principle and Liouville type results for singular fully nonlinear operators, Ann. Fac. Sci. Toulouse, 13 (2004), 261-287.
doi: 10.5802/afst.1070.![]() ![]() ![]() |
[14] |
M. A. Burgos-Perez, J. Garcia Melian and A. Quaas, Classification of supersolutions and Liouville theorems for some nonlinear elliptic problems, Discrete Contin. Dyn. Syst., 36 (2016), 4703-4721.
doi: 10.3934/dcds.2016004.![]() ![]() ![]() |
[15] |
G. Caristi and E. Mitidieri, Nonexistence of positive solutions of quasilinear equations, Adv. Diff. Equ., 2 (1997), 317-359.
![]() ![]() |
[16] |
H. Chen and P. Felmer, On Liouville type theorems for fully nonlinear elliptic equations with gradient term, J. Differential Equations, 255 (2013), 2167-2195.
doi: 10.1016/j.jde.2013.06.009.![]() ![]() ![]() |
[17] |
P. Felmer, A. Quaas and B. Sirakov, Solvability of nonlinear elliptic equations with gradient terms, J. Diff. Eq., 254 (2013), 4327-4346.
doi: 10.1016/j.jde.2013.03.003.![]() ![]() ![]() |
[18] |
R. Filippucci, Nonexistence of positive weak solutions of elliptic inequalities, Nonlinear Anal., 70 (2009), 2903-2916.
doi: 10.1016/j.na.2008.12.018.![]() ![]() ![]() |
[19] |
L. Jeanjean and B. Sirakov, Existence and multiplicity for elliptic problems with quadratic growth in the gradient, Comm. Part. Diff. Eq., 38 (2013), 244-264.
doi: 10.1080/03605302.2012.738754.![]() ![]() ![]() |
[20] |
L. Rossi, Non-existence of positive solutions of fully nonlinear elliptic bounded domains, Commun. Pure Appl. Anal., 7 (2008), 125-141.
doi: 10.3934/cpaa.2008.7.125.![]() ![]() ![]() |
[21] |
J. Serrin and H. Zou, CauchyLiouville and universal boundedness theorems for quasilinear elliptic equations and inequalities, Acta. Math., 189 (2002), 79-142.
doi: 10.1007/BF02392645.![]() ![]() ![]() |
[22] |
L. Veron, Local and Global Aspects of Quasilinear Degenerate Elliptic Equations, Quasilinear elliptic singular problems. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2017.
doi: 10.1142/9850.![]() ![]() ![]() |