June  2019, 39(6): 3017-3035. doi: 10.3934/dcds.2019125

Nonlinear Fokker–Planck equations for probability measures on path space and path-distribution dependent SDEs

1. 

Center for Applied Mathematics, Tianjin University, Tianjin 300072, China

2. 

Department of Mathematics, Bielefeld University, D-33501 Bielefeld, Germany

3. 

Department of Mathematics, Swansea University, Singleton Park, SA2 8PP, United Kingdom

* Corresponding author: Feng-Yu Wang

Received  January 2018 Revised  October 2018 Published  February 2019

Fund Project: Supported by NNSFC (11801406, 11771326, 11831014, 11431014, 11726627)

By investigating path-distribution dependent stochastic differential equations, the following type of nonlinear Fokker–Planck equations for probability measures
$ (\mu_t)_{t \geq 0} $
on the path space
$ {\scr {C}}: = C([-r_0, 0];\mathbb R^d), $
is analyzed:
$ \partial_t \mu(t) = L_{t, \mu_t}^*\mu_t, \ \ t\ge 0, $
where
$ \mu(t) $
is the image of
$ \mu_t $
under the projection
$ {\scr {C}}\ni\xi\mapsto \xi(0)\in\mathbb R^d $
, and
$ \begin{align*} L_{t, \mu}(\xi)&: = \frac 1 2\sum\limits_{i, j = 1}^d a_{ij}(t, \xi, \mu)\frac{\partial^2} {\partial_{\xi(0)_i} \partial_{\xi(0)_j }} \\\; &\quad +\sum\limits_{i = 1}^d b_i(t, \xi, \mu)\frac{\partial}{\partial_{\xi(0)_i}}, \ \ t\ge 0, \xi\in {\scr {C}}, \mu\in \scr P^{\scr {C}}. \end{align*} $
Under reasonable conditions on the coefficients
$ a_{ij} $
and
$ b_i $
, the existence, uniqueness, Lipschitz continuity in Wasserstein distance, total variational norm and entropy, as well as derivative estimates are derived for the martingale solutions.
Citation: Xing Huang, Michael Röckner, Feng-Yu Wang. Nonlinear Fokker–Planck equations for probability measures on path space and path-distribution dependent SDEs. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3017-3035. doi: 10.3934/dcds.2019125
References:
[1]

M. ArnaudonA. Thalmaier and F.-Y. Wang, Harnack inequality and heat kernel estimate on manifolds with curvature unbounded below, Bull. Sci. Math., 130 (2006), 223-233.  doi: 10.1016/j.bulsci.2005.10.001.  Google Scholar

[2]

J. Bao, F.-Y. Wang and C. Yuan, Asymptotic Log-Harnack inequality and applications for stochastic systems of infinite memory, Stochastic Processes and their Applications, , 2018, arXiv: 1710.01042. doi: 10.1016/j.spa.2018.12.010.  Google Scholar

[3]

J. Bao, F.-Y. Wang and C. Yuan, Ergodicity for Neutral Type SDEs with Infinite Length of Memory, preprint, arXiv: 1805.03431. Google Scholar

[4]

V. Bogachev, A. Krylov, M. Röckner and S. Shaposhnikov, Fokker-Planck-Kolmogorov Equations, Monograph, AMS, 2015. doi: 10.1090/surv/207.  Google Scholar

[5]

O. A. Butkovsky, On ergodic properties of nonlinear Markov chains and stochastic McKean-Vlasov equations, Theo. Probab. Appl., 58 (2014), 661-674.  doi: 10.1137/S0040585X97986825.  Google Scholar

[6] I. Csiszár and J. Körne, Information Theory: Coding Theorems for Discrete Memory-less Systems, Academic Press, New York, 1981.   Google Scholar
[7]

K. Carrapatoso, Exponential convergence to equilibrium for the homogeneous Landau equation with hard potentials, Bull. Sci. Math., 139 (2015), 777-805.  doi: 10.1016/j.bulsci.2014.12.002.  Google Scholar

[8]

L. Desvillettes and C. Villani, On the spatially homogeneous Landau equation for hard potentials, Part Ⅰ: existence, uniqueness and smothness, Comm. Part. Diff. Equat., 25 (2000), 179-259.  doi: 10.1080/03605300008821512.  Google Scholar

[9]

L. Desvillettes and C. Villani, On the spatially homogeneous Landau equation for hard potentials, Part Ⅱ: H-Theorem and Applications, Comm. Part. Diff. Equat., 25 (2000), 261-298.  doi: 10.1080/03605300008821513.  Google Scholar

[10]

A. Eberle, A. Guillin and R. Zimmer, Quantitative Harris type theorems for diffusions and McKean-Vlasov processes, Trans. Amer. Math. Soc., 2018, arXiv: 1606.06012. doi: 10.1090/tran/7576.  Google Scholar

[11]

N. Fournier and A. Guillin, From a Kac-like particle system to the Landau equation for hard potentials and Maxwell molecules, Ann. Sci. l'ENS, 50 (2017), 157-199.  doi: 10.24033/asens.2318.  Google Scholar

[12]

H. Guérin, Existence and regularity of a weak function-solution for some Landau equations with a stochastic approach, Stoch. Proc. Appl., 101 (2002), 303-325.  doi: 10.1016/S0304-4149(02)00107-2.  Google Scholar

[13]

M. HairerJ. C. Mattingly and M. Scheutzow, Asymptotic coupling and a general form of Harris theorem with applications to stochastic delay equations, Probab. Theory Related Fields, 149 (2011), 223-259.  doi: 10.1007/s00440-009-0250-6.  Google Scholar

[14]

I. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, North-Holland Publishing Co., Amsterdam, 1981.  Google Scholar

[15]

A. N. Kolmogoroff, Über die analytischen Methoden in der Wahrscheinlichkeitsrechnung, Math. Ann., 104 (1931), 415-458.  doi: 10.1007/BF01457949.  Google Scholar

[16]

Yu. S. Mishura and A. Yu. Veretennikov, Existence and uniqueness theorems for solutions of McKean-Vlasov stochastic equations, preprint, arXiv: 1603.02212. Google Scholar

[17]

S.-E. A. Mohammed, Stochastic Functional Differential Equations, Pitman, Boston, 1984.  Google Scholar

[18]

M. S. Pinsker, Information and Information Stability of Random Variables and Processes, Holden-Day, San Francisco, 1964.  Google Scholar

[19]

M. Röckner and F.-Y. Wang, Log-harnack inequality for stochastic differential equations in Hilbert spaces and its consequences, Infin. Dim. Anal. Quat. Probab. Relat. Top., 13 (2010), 27-37.  doi: 10.1142/S0219025710003936.  Google Scholar

[20]

D. W. Stroock and S. R. S. Varadhan, Multidimensional Diffusion Processes, Springer, New York, 1979.  Google Scholar

[21]

A.-S. Sznitman, Topics in propagation of chaos, Lecture Notes in Mathematics, 1464 (1991), 165-251.  doi: 10.1007/BFb0085169.  Google Scholar

[22]

C. Villani, Optimal Transport, Old and New, Springer-Verlg, Berlin, 2009. doi: 10.1007/978-3-540-71050-9.  Google Scholar

[23]

C. Villani, On the spatially homogeneous Landau equation for Maxwellian mocecules, Math. Mod. Meth. Appl. Sci., 8 (1998), 957-983.  doi: 10.1142/S0218202598000433.  Google Scholar

[24]

F.-Y. Wang, Logarithmic Sobolev inequalities on noncompact Riemannian manifolds, Probab. Theory Related Fields, 109 (1997), 417-424.  doi: 10.1007/s004400050137.  Google Scholar

[25]

F.-Y. Wang, Harnack inequality and applications for stochastic generalized porous media equations, Ann. Probab., 35 (2007), 1333-1350.  doi: 10.1214/009117906000001204.  Google Scholar

[26]

F.-Y. Wang, Harnack Inequalities and Applications for Stochastic Partial Differential Equations, Springer, Berlin, 2013. doi: 10.1007/978-1-4614-7934-5.  Google Scholar

[27]

F.-Y. Wang, Harnack inequalities on manifolds with boundary and applications, J. Math. Pures Appl., 94 (2010), 304-321.  doi: 10.1016/j.matpur.2010.03.001.  Google Scholar

[28]

F.-Y. Wang, Harnack inequality for SDE with multiplicative noise and extension to Neumann semigroup on nonconvex manifolds, Ann. Probab., 39 (2011), 1449-1467.  doi: 10.1214/10-AOP600.  Google Scholar

[29]

F.-Y. Wang, Integration by parts formula and shift Harnack inequality for stochastic equations, Ann. Probab., 42 (2014), 994-1019.  doi: 10.1214/13-AOP875.  Google Scholar

[30]

F.-Y. Wang and C. Yuan, Harnack inequalities for functional SDEs with multiplicative noise and applications, Stoch. Proc. Appl., 121 (2011), 2692-2710.  doi: 10.1016/j.spa.2011.07.001.  Google Scholar

[31]

F.-Y. Wang, Distribution-dependent SDEs for Landau type equations, Stoch. Proc. Appl., 128 (2018), 595-621.  doi: 10.1016/j.spa.2017.05.006.  Google Scholar

[32]

T. Yamada and S. Watanabe, On the uniqueness of solutions of stochastic differential equations Ⅰ & Ⅱ, J. Math. Kyoto Univ., 11 (1971), 155-167.  doi: 10.1215/kjm/1250523620.  Google Scholar

show all references

References:
[1]

M. ArnaudonA. Thalmaier and F.-Y. Wang, Harnack inequality and heat kernel estimate on manifolds with curvature unbounded below, Bull. Sci. Math., 130 (2006), 223-233.  doi: 10.1016/j.bulsci.2005.10.001.  Google Scholar

[2]

J. Bao, F.-Y. Wang and C. Yuan, Asymptotic Log-Harnack inequality and applications for stochastic systems of infinite memory, Stochastic Processes and their Applications, , 2018, arXiv: 1710.01042. doi: 10.1016/j.spa.2018.12.010.  Google Scholar

[3]

J. Bao, F.-Y. Wang and C. Yuan, Ergodicity for Neutral Type SDEs with Infinite Length of Memory, preprint, arXiv: 1805.03431. Google Scholar

[4]

V. Bogachev, A. Krylov, M. Röckner and S. Shaposhnikov, Fokker-Planck-Kolmogorov Equations, Monograph, AMS, 2015. doi: 10.1090/surv/207.  Google Scholar

[5]

O. A. Butkovsky, On ergodic properties of nonlinear Markov chains and stochastic McKean-Vlasov equations, Theo. Probab. Appl., 58 (2014), 661-674.  doi: 10.1137/S0040585X97986825.  Google Scholar

[6] I. Csiszár and J. Körne, Information Theory: Coding Theorems for Discrete Memory-less Systems, Academic Press, New York, 1981.   Google Scholar
[7]

K. Carrapatoso, Exponential convergence to equilibrium for the homogeneous Landau equation with hard potentials, Bull. Sci. Math., 139 (2015), 777-805.  doi: 10.1016/j.bulsci.2014.12.002.  Google Scholar

[8]

L. Desvillettes and C. Villani, On the spatially homogeneous Landau equation for hard potentials, Part Ⅰ: existence, uniqueness and smothness, Comm. Part. Diff. Equat., 25 (2000), 179-259.  doi: 10.1080/03605300008821512.  Google Scholar

[9]

L. Desvillettes and C. Villani, On the spatially homogeneous Landau equation for hard potentials, Part Ⅱ: H-Theorem and Applications, Comm. Part. Diff. Equat., 25 (2000), 261-298.  doi: 10.1080/03605300008821513.  Google Scholar

[10]

A. Eberle, A. Guillin and R. Zimmer, Quantitative Harris type theorems for diffusions and McKean-Vlasov processes, Trans. Amer. Math. Soc., 2018, arXiv: 1606.06012. doi: 10.1090/tran/7576.  Google Scholar

[11]

N. Fournier and A. Guillin, From a Kac-like particle system to the Landau equation for hard potentials and Maxwell molecules, Ann. Sci. l'ENS, 50 (2017), 157-199.  doi: 10.24033/asens.2318.  Google Scholar

[12]

H. Guérin, Existence and regularity of a weak function-solution for some Landau equations with a stochastic approach, Stoch. Proc. Appl., 101 (2002), 303-325.  doi: 10.1016/S0304-4149(02)00107-2.  Google Scholar

[13]

M. HairerJ. C. Mattingly and M. Scheutzow, Asymptotic coupling and a general form of Harris theorem with applications to stochastic delay equations, Probab. Theory Related Fields, 149 (2011), 223-259.  doi: 10.1007/s00440-009-0250-6.  Google Scholar

[14]

I. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, North-Holland Publishing Co., Amsterdam, 1981.  Google Scholar

[15]

A. N. Kolmogoroff, Über die analytischen Methoden in der Wahrscheinlichkeitsrechnung, Math. Ann., 104 (1931), 415-458.  doi: 10.1007/BF01457949.  Google Scholar

[16]

Yu. S. Mishura and A. Yu. Veretennikov, Existence and uniqueness theorems for solutions of McKean-Vlasov stochastic equations, preprint, arXiv: 1603.02212. Google Scholar

[17]

S.-E. A. Mohammed, Stochastic Functional Differential Equations, Pitman, Boston, 1984.  Google Scholar

[18]

M. S. Pinsker, Information and Information Stability of Random Variables and Processes, Holden-Day, San Francisco, 1964.  Google Scholar

[19]

M. Röckner and F.-Y. Wang, Log-harnack inequality for stochastic differential equations in Hilbert spaces and its consequences, Infin. Dim. Anal. Quat. Probab. Relat. Top., 13 (2010), 27-37.  doi: 10.1142/S0219025710003936.  Google Scholar

[20]

D. W. Stroock and S. R. S. Varadhan, Multidimensional Diffusion Processes, Springer, New York, 1979.  Google Scholar

[21]

A.-S. Sznitman, Topics in propagation of chaos, Lecture Notes in Mathematics, 1464 (1991), 165-251.  doi: 10.1007/BFb0085169.  Google Scholar

[22]

C. Villani, Optimal Transport, Old and New, Springer-Verlg, Berlin, 2009. doi: 10.1007/978-3-540-71050-9.  Google Scholar

[23]

C. Villani, On the spatially homogeneous Landau equation for Maxwellian mocecules, Math. Mod. Meth. Appl. Sci., 8 (1998), 957-983.  doi: 10.1142/S0218202598000433.  Google Scholar

[24]

F.-Y. Wang, Logarithmic Sobolev inequalities on noncompact Riemannian manifolds, Probab. Theory Related Fields, 109 (1997), 417-424.  doi: 10.1007/s004400050137.  Google Scholar

[25]

F.-Y. Wang, Harnack inequality and applications for stochastic generalized porous media equations, Ann. Probab., 35 (2007), 1333-1350.  doi: 10.1214/009117906000001204.  Google Scholar

[26]

F.-Y. Wang, Harnack Inequalities and Applications for Stochastic Partial Differential Equations, Springer, Berlin, 2013. doi: 10.1007/978-1-4614-7934-5.  Google Scholar

[27]

F.-Y. Wang, Harnack inequalities on manifolds with boundary and applications, J. Math. Pures Appl., 94 (2010), 304-321.  doi: 10.1016/j.matpur.2010.03.001.  Google Scholar

[28]

F.-Y. Wang, Harnack inequality for SDE with multiplicative noise and extension to Neumann semigroup on nonconvex manifolds, Ann. Probab., 39 (2011), 1449-1467.  doi: 10.1214/10-AOP600.  Google Scholar

[29]

F.-Y. Wang, Integration by parts formula and shift Harnack inequality for stochastic equations, Ann. Probab., 42 (2014), 994-1019.  doi: 10.1214/13-AOP875.  Google Scholar

[30]

F.-Y. Wang and C. Yuan, Harnack inequalities for functional SDEs with multiplicative noise and applications, Stoch. Proc. Appl., 121 (2011), 2692-2710.  doi: 10.1016/j.spa.2011.07.001.  Google Scholar

[31]

F.-Y. Wang, Distribution-dependent SDEs for Landau type equations, Stoch. Proc. Appl., 128 (2018), 595-621.  doi: 10.1016/j.spa.2017.05.006.  Google Scholar

[32]

T. Yamada and S. Watanabe, On the uniqueness of solutions of stochastic differential equations Ⅰ & Ⅱ, J. Math. Kyoto Univ., 11 (1971), 155-167.  doi: 10.1215/kjm/1250523620.  Google Scholar

[1]

Xing Huang, Chang Liu, Feng-Yu Wang. Order preservation for path-distribution dependent SDEs. Communications on Pure & Applied Analysis, 2018, 17 (5) : 2125-2133. doi: 10.3934/cpaa.2018100

[2]

Liliana Trejo-Valencia, Edgardo Ugalde. Projective distance and $g$-measures. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3565-3579. doi: 10.3934/dcdsb.2015.20.3565

[3]

Daniela De Silva, Ovidiu Savin. A note on higher regularity boundary Harnack inequality. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 6155-6163. doi: 10.3934/dcds.2015.35.6155

[4]

Pablo Raúl Stinga, Chao Zhang. Harnack's inequality for fractional nonlocal equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 3153-3170. doi: 10.3934/dcds.2013.33.3153

[5]

Giuseppe Di Fazio, Maria Stella Fanciullo, Pietro Zamboni. Harnack inequality for degenerate elliptic equations and sum operators. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2363-2376. doi: 10.3934/cpaa.2015.14.2363

[6]

Michihiro Hirayama. Periodic probability measures are dense in the set of invariant measures. Discrete & Continuous Dynamical Systems - A, 2003, 9 (5) : 1185-1192. doi: 10.3934/dcds.2003.9.1185

[7]

Benedetto Piccoli, Francesco Rossi. Measure dynamics with Probability Vector Fields and sources. Discrete & Continuous Dynamical Systems - A, 2019, 39 (11) : 6207-6230. doi: 10.3934/dcds.2019270

[8]

Jinggang Tan, Jingang Xiong. A Harnack inequality for fractional Laplace equations with lower order terms. Discrete & Continuous Dynamical Systems - A, 2011, 31 (3) : 975-983. doi: 10.3934/dcds.2011.31.975

[9]

Eleonora Bardelli, Andrea Carlo Giuseppe Mennucci. Probability measures on infinite-dimensional Stiefel manifolds. Journal of Geometric Mechanics, 2017, 9 (3) : 291-316. doi: 10.3934/jgm.2017012

[10]

Xavier Cabré. Elliptic PDE's in probability and geometry: Symmetry and regularity of solutions. Discrete & Continuous Dynamical Systems - A, 2008, 20 (3) : 425-457. doi: 10.3934/dcds.2008.20.425

[11]

Fatiha Alabau-Boussouira. On the influence of the coupling on the dynamics of single-observed cascade systems of PDE's. Mathematical Control & Related Fields, 2015, 5 (1) : 1-30. doi: 10.3934/mcrf.2015.5.1

[12]

Sabine Eisenhofer, Messoud A. Efendiev, Mitsuharu Ôtani, Sabine Schulz, Hans Zischka. On an ODE-PDE coupling model of the mitochondrial swelling process. Discrete & Continuous Dynamical Systems - B, 2015, 20 (4) : 1031-1057. doi: 10.3934/dcdsb.2015.20.1031

[13]

Andrea Tosin, Paolo Frasca. Existence and approximation of probability measure solutions to models of collective behaviors. Networks & Heterogeneous Media, 2011, 6 (3) : 561-596. doi: 10.3934/nhm.2011.6.561

[14]

Simon Lloyd, Edson Vargas. Critical covering maps without absolutely continuous invariant probability measure. Discrete & Continuous Dynamical Systems - A, 2019, 39 (5) : 2393-2412. doi: 10.3934/dcds.2019101

[15]

Raz Kupferman, Asaf Shachar. On strain measures and the geodesic distance to $SO_n$ in the general linear group. Journal of Geometric Mechanics, 2016, 8 (4) : 437-460. doi: 10.3934/jgm.2016015

[16]

Anne-Sophie de Suzzoni. Continuity of the flow of the Benjamin-Bona-Mahony equation on probability measures. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 2905-2920. doi: 10.3934/dcds.2015.35.2905

[17]

Giulia Cavagnari. Regularity results for a time-optimal control problem in the space of probability measures. Mathematical Control & Related Fields, 2017, 7 (2) : 213-233. doi: 10.3934/mcrf.2017007

[18]

Fabio Paronetto. A Harnack type inequality and a maximum principle for an elliptic-parabolic and forward-backward parabolic De Giorgi class. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 853-866. doi: 10.3934/dcdss.2017043

[19]

Wen Wang, Dapeng Xie, Hui Zhou. Local Aronson-Bénilan gradient estimates and Harnack inequality for the porous medium equation along Ricci flow. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1957-1974. doi: 10.3934/cpaa.2018093

[20]

Simona Fornaro, Maria Sosio, Vincenzo Vespri. Harnack type inequalities for some doubly nonlinear singular parabolic equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5909-5926. doi: 10.3934/dcds.2015.35.5909

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (88)
  • HTML views (100)
  • Cited by (0)

Other articles
by authors

[Back to Top]