June  2019, 39(6): 3069-3097. doi: 10.3934/dcds.2019127

Global classical large solution to compressible viscous micropolar and heat-conducting fluids with vacuum

School of Mathematics, South China University of Technology, Guangzhou 510641, China

* Corresponding author: Changjiang Zhu

Received  February 2018 Revised  December 2018 Published  February 2019

In this paper we consider the non-stationary 1-D flow of a compressible viscous and heat-conducting micropolar fluid, assuming that it is in the thermodynamically sense perfect and polytropic. Since the strong nonlinearity and degeneracies of the equations due to the temperature equation and vanishing of density, there are a few results about global existence of classical solution to this model. In the paper, we obtain a global classical solution to the equations with large initial data and vacuum. Moreover, we get the uniqueness of the solution to this system without vacuum. The analysis is based on the assumption $ \kappa(\theta) = O(1+\theta^q) $ where $ q\geq0 $ and delicate energy estimates.

Citation: Zefu Feng, Changjiang Zhu. Global classical large solution to compressible viscous micropolar and heat-conducting fluids with vacuum. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3069-3097. doi: 10.3934/dcds.2019127
References:
[1]

M. T. Chen, Global strong solutions for the viscous, micropolar, compressible flow, J. Partial Differ. Equ., 24 (2011), 158-164.   Google Scholar

[2]

M. T. Chen, Blow up criterion for viscous, compressible micropolar fluids with vacuum, Nonlinear Anal.RWA., 13 (2012), 850-859.  doi: 10.1016/j.nonrwa.2011.08.021.  Google Scholar

[3]

M. T. ChenB. Huang and J. W. Zhang, Blow up criterion for the three-dimensional equations of compressible viscous micropolar fluids with vacuum, Nonlinear Anal., 79 (2013), 1-11.  doi: 10.1016/j.na.2012.10.013.  Google Scholar

[4]

M. T. ChenX. Y. Xu and J. W. Zhang, Global weak solutions of 3D compressible micropolar fluids with discontinuous initial data and vacuum, Commun. Math. Sci., 13 (2015), 225-247.  doi: 10.4310/CMS.2015.v13.n1.a11.  Google Scholar

[5]

Q. L. Chen and C. X. Miao, Global well-posedness for the micropolar fluid system in critical Besov spaces, J. Differential Equations, 252 (2012), 2698-2724.  doi: 10.1016/j.jde.2011.09.035.  Google Scholar

[6]

Y. Cho and H. Kim, Existence results for viscous polytropic fluids with vacuum, J. Differential Equations, 228 (2006), 377-411.  doi: 10.1016/j.jde.2006.05.001.  Google Scholar

[7]

Y. Cho and H. Kim, On classical solutions of the compressible Navier-Stokes equations with nonnegative initial densities, Manuscripta Math., 120 (2006), 91-129.  doi: 10.1007/s00229-006-0637-y.  Google Scholar

[8]

S. J. DingH. Y. Wen and C. J. Zhu, Global classical large solutions to 1D compressible Navier-Stokes equations with density-dependent viscosity and vacuum, J. Differential Equations, 251 (2011), 1696-1725.  doi: 10.1016/j.jde.2011.05.025.  Google Scholar

[9]

I. Dražić and N. Mujaković, 3-D flow of a compressible viscous micropolar fluid with spherical symmetry: A global existence theorem, Bound. Value Probl., 2015 (2015), 21pp. doi: 10.1186/s13661-015-0357-x.  Google Scholar

[10]

I. Dražić and N. Mujaković, 3-D flow of a compressible viscous micropolar fluid with spherical symmetry: Large time behavior of the solution, J. Math. Anal. Appl., 431 (2015), 545-568.  doi: 10.1016/j.jmaa.2015.06.002.  Google Scholar

[11]

I. DražićL. Simčić and N. Mujakovi'c, 3-D flow of a compressible viscous micropolar fluid with spherical symmetry: regularity of the solution, J. Math. Anal. Appl., 438 (2016), 162-183.  doi: 10.1016/j.jmaa.2016.01.071.  Google Scholar

[12]

A. C. Eringen, Theory of micropolar fluids, J. Math. Mech., 16 (1966), 1-18.   Google Scholar

[13]

L. C. Evans, Partial Differential Equations, Grad. Stud. Math., 19, American Mathematical Society, Providence, RI, 1998.  Google Scholar

[14]

E. Feireisl, On the motion of a viscous, compressible and heat-conducting fluid, Indiana Univ. Math. J., 53 (2004), 1705-1738.  doi: 10.1512/iumj.2004.53.2510.  Google Scholar

[15]

E. FeireislA. Novotný and H. Petzeltová, On the existence of globally defined weak solutions to the Navier-Stokes equations, J. Math. Fluid Mech., 3 (2001), 358-392.  doi: 10.1007/PL00000976.  Google Scholar

[16] E. Feireisl, Dynamics of Viscous Compressible Fluids, Oxford University Press, 2004.   Google Scholar
[17]

G. P. Galdi and S. Rionero, A note on the existence and uniqueness of solutions of the micropolar fluid equations, Internat. J. Engrg. Sci., 15 (1977), 105-108.  doi: 10.1016/0020-7225(77)90025-8.  Google Scholar

[18]

Q. Han and F. H. Lin, Elliptic Partial Differential Equations, American Mathematical Society, Providence, RI, 2011.  Google Scholar

[19]

D. Hoff, Global existence for 1D, compressible, isentropic Navier-Stokes equations with large initial data, Trans. Am. Math. Soc., 303 (1987), 169-181.  doi: 10.2307/2000785.  Google Scholar

[20]

X. D. HuangJ. Li and Z. P. Xin, Global well-posedness of classical solutions with large oscillations and vacuum to the three-dimensional isentropic compressible Navier-Stokes equations, Commun. Pure Appl. Math., 65 (2012), 549-585.  doi: 10.1002/cpa.21382.  Google Scholar

[21]

Z. L. Liang and S. Q. Wu, Classical solution to 1D viscous polytropic perfect fluids with constant diffusion coefficients and vacuum, Z. Angew. Math. Phys., 68 (2017), Art. 22, 20 pp. doi: 10.1007/s00033-017-0767-y.  Google Scholar

[22]

P. L. Lions, Mathematical Topics in Fluid Mechanics: Volume 2: Compressible Models, Oxford University Press on Demand, 1998.  Google Scholar

[23]

Q. Q. Liu and P. X. Zhang, Optimal time decay of the compressible micropolar fluids, J. Differential Equations, 260 (2016), 7634-7661.  doi: 10.1016/j.jde.2016.01.037.  Google Scholar

[24]

G. Lukaszewicz, Micropolar Fluids. Theory and Applications, Modeling and Simulation in Science, Engineering and Technology, Birkhäuser, Boston. MA, 1999. doi: 10.1007/978-1-4612-0641-5.  Google Scholar

[25]

N. Mujaković, One-dimensional flow of a compressible viscous micropolar fluid: a global existence theorem, Glas. Mat., 33 (1998), 199-208.   Google Scholar

[26]

N. Mujaković, One-dimensional flow of a compressible viscous micropolar fluid: regularity of the solution, Rad. Mat., 10 (2001), 181-193.   Google Scholar

[27]

N. Mujaković, Global in time estimates for one-dimensional compressible viscous micropolar fluid model, Glas. Mat. Ser. III, 40 (2005), 103-120.  doi: 10.3336/gm.40.1.10.  Google Scholar

[28]

N. Mujaković, Nonhomogeneous boundary value problem for one-dimensional compressible viscous micropolar fluid model: Regularity of the solution, Bound. Value Probl., 2008 (2008), Art. ID 189748, 15 pp. doi: 10.1155/2008/189748.  Google Scholar

[29]

N. Mujaković, Non-homogeneous boundary value problem for one-dimensional compressible viscous micropolar fluid model: a global existence theorem, Math. Inequal. Appl., 12 (2009), 651-662.  doi: 10.7153/mia-12-49.  Google Scholar

[30]

B. Nowakowski, Large time existence of strong solutions to micropolar equations in cylindrical domains, Nonlinear Anal. RWA., 14 (2013), 635-660.  doi: 10.1016/j.nonrwa.2012.07.023.  Google Scholar

[31]

Y. M. QinT. G. Wang and G. L. Hu, The Cauchy problem for a 1D compressible viscous micropolar fluid model: analysis of the stabilization and the regularity, Nonlinear Anal. RWA., 13 (2012), 1010-1029.  doi: 10.1016/j.nonrwa.2010.10.023.  Google Scholar

[32]

J. Simon, Nonhomogeneous viscous incompressible fluids: Existence of velocity, density, and pressure, SIAM J. Math. Anal., 21 (1990), 1093-1117.  doi: 10.1137/0521061.  Google Scholar

[33]

H. Y. Wen and C. J. Zhu, Global classical large solutions to Navier-Stokes equations for viscous compressible and heat conducting fluids with vacuum, SIAM J. Math. Anal., 45 (2013), 431-468.  doi: 10.1137/120877829.  Google Scholar

[34]

H. Y. Wen and C. J. Zhu, Global symmetric classical and strong solutions of the full compressible Navier-Stokes equations with vacuum and large initial data, SIAM J. Math. Anal., 102 (2014), 498-545.  doi: 10.1016/j.matpur.2013.12.003.  Google Scholar

show all references

References:
[1]

M. T. Chen, Global strong solutions for the viscous, micropolar, compressible flow, J. Partial Differ. Equ., 24 (2011), 158-164.   Google Scholar

[2]

M. T. Chen, Blow up criterion for viscous, compressible micropolar fluids with vacuum, Nonlinear Anal.RWA., 13 (2012), 850-859.  doi: 10.1016/j.nonrwa.2011.08.021.  Google Scholar

[3]

M. T. ChenB. Huang and J. W. Zhang, Blow up criterion for the three-dimensional equations of compressible viscous micropolar fluids with vacuum, Nonlinear Anal., 79 (2013), 1-11.  doi: 10.1016/j.na.2012.10.013.  Google Scholar

[4]

M. T. ChenX. Y. Xu and J. W. Zhang, Global weak solutions of 3D compressible micropolar fluids with discontinuous initial data and vacuum, Commun. Math. Sci., 13 (2015), 225-247.  doi: 10.4310/CMS.2015.v13.n1.a11.  Google Scholar

[5]

Q. L. Chen and C. X. Miao, Global well-posedness for the micropolar fluid system in critical Besov spaces, J. Differential Equations, 252 (2012), 2698-2724.  doi: 10.1016/j.jde.2011.09.035.  Google Scholar

[6]

Y. Cho and H. Kim, Existence results for viscous polytropic fluids with vacuum, J. Differential Equations, 228 (2006), 377-411.  doi: 10.1016/j.jde.2006.05.001.  Google Scholar

[7]

Y. Cho and H. Kim, On classical solutions of the compressible Navier-Stokes equations with nonnegative initial densities, Manuscripta Math., 120 (2006), 91-129.  doi: 10.1007/s00229-006-0637-y.  Google Scholar

[8]

S. J. DingH. Y. Wen and C. J. Zhu, Global classical large solutions to 1D compressible Navier-Stokes equations with density-dependent viscosity and vacuum, J. Differential Equations, 251 (2011), 1696-1725.  doi: 10.1016/j.jde.2011.05.025.  Google Scholar

[9]

I. Dražić and N. Mujaković, 3-D flow of a compressible viscous micropolar fluid with spherical symmetry: A global existence theorem, Bound. Value Probl., 2015 (2015), 21pp. doi: 10.1186/s13661-015-0357-x.  Google Scholar

[10]

I. Dražić and N. Mujaković, 3-D flow of a compressible viscous micropolar fluid with spherical symmetry: Large time behavior of the solution, J. Math. Anal. Appl., 431 (2015), 545-568.  doi: 10.1016/j.jmaa.2015.06.002.  Google Scholar

[11]

I. DražićL. Simčić and N. Mujakovi'c, 3-D flow of a compressible viscous micropolar fluid with spherical symmetry: regularity of the solution, J. Math. Anal. Appl., 438 (2016), 162-183.  doi: 10.1016/j.jmaa.2016.01.071.  Google Scholar

[12]

A. C. Eringen, Theory of micropolar fluids, J. Math. Mech., 16 (1966), 1-18.   Google Scholar

[13]

L. C. Evans, Partial Differential Equations, Grad. Stud. Math., 19, American Mathematical Society, Providence, RI, 1998.  Google Scholar

[14]

E. Feireisl, On the motion of a viscous, compressible and heat-conducting fluid, Indiana Univ. Math. J., 53 (2004), 1705-1738.  doi: 10.1512/iumj.2004.53.2510.  Google Scholar

[15]

E. FeireislA. Novotný and H. Petzeltová, On the existence of globally defined weak solutions to the Navier-Stokes equations, J. Math. Fluid Mech., 3 (2001), 358-392.  doi: 10.1007/PL00000976.  Google Scholar

[16] E. Feireisl, Dynamics of Viscous Compressible Fluids, Oxford University Press, 2004.   Google Scholar
[17]

G. P. Galdi and S. Rionero, A note on the existence and uniqueness of solutions of the micropolar fluid equations, Internat. J. Engrg. Sci., 15 (1977), 105-108.  doi: 10.1016/0020-7225(77)90025-8.  Google Scholar

[18]

Q. Han and F. H. Lin, Elliptic Partial Differential Equations, American Mathematical Society, Providence, RI, 2011.  Google Scholar

[19]

D. Hoff, Global existence for 1D, compressible, isentropic Navier-Stokes equations with large initial data, Trans. Am. Math. Soc., 303 (1987), 169-181.  doi: 10.2307/2000785.  Google Scholar

[20]

X. D. HuangJ. Li and Z. P. Xin, Global well-posedness of classical solutions with large oscillations and vacuum to the three-dimensional isentropic compressible Navier-Stokes equations, Commun. Pure Appl. Math., 65 (2012), 549-585.  doi: 10.1002/cpa.21382.  Google Scholar

[21]

Z. L. Liang and S. Q. Wu, Classical solution to 1D viscous polytropic perfect fluids with constant diffusion coefficients and vacuum, Z. Angew. Math. Phys., 68 (2017), Art. 22, 20 pp. doi: 10.1007/s00033-017-0767-y.  Google Scholar

[22]

P. L. Lions, Mathematical Topics in Fluid Mechanics: Volume 2: Compressible Models, Oxford University Press on Demand, 1998.  Google Scholar

[23]

Q. Q. Liu and P. X. Zhang, Optimal time decay of the compressible micropolar fluids, J. Differential Equations, 260 (2016), 7634-7661.  doi: 10.1016/j.jde.2016.01.037.  Google Scholar

[24]

G. Lukaszewicz, Micropolar Fluids. Theory and Applications, Modeling and Simulation in Science, Engineering and Technology, Birkhäuser, Boston. MA, 1999. doi: 10.1007/978-1-4612-0641-5.  Google Scholar

[25]

N. Mujaković, One-dimensional flow of a compressible viscous micropolar fluid: a global existence theorem, Glas. Mat., 33 (1998), 199-208.   Google Scholar

[26]

N. Mujaković, One-dimensional flow of a compressible viscous micropolar fluid: regularity of the solution, Rad. Mat., 10 (2001), 181-193.   Google Scholar

[27]

N. Mujaković, Global in time estimates for one-dimensional compressible viscous micropolar fluid model, Glas. Mat. Ser. III, 40 (2005), 103-120.  doi: 10.3336/gm.40.1.10.  Google Scholar

[28]

N. Mujaković, Nonhomogeneous boundary value problem for one-dimensional compressible viscous micropolar fluid model: Regularity of the solution, Bound. Value Probl., 2008 (2008), Art. ID 189748, 15 pp. doi: 10.1155/2008/189748.  Google Scholar

[29]

N. Mujaković, Non-homogeneous boundary value problem for one-dimensional compressible viscous micropolar fluid model: a global existence theorem, Math. Inequal. Appl., 12 (2009), 651-662.  doi: 10.7153/mia-12-49.  Google Scholar

[30]

B. Nowakowski, Large time existence of strong solutions to micropolar equations in cylindrical domains, Nonlinear Anal. RWA., 14 (2013), 635-660.  doi: 10.1016/j.nonrwa.2012.07.023.  Google Scholar

[31]

Y. M. QinT. G. Wang and G. L. Hu, The Cauchy problem for a 1D compressible viscous micropolar fluid model: analysis of the stabilization and the regularity, Nonlinear Anal. RWA., 13 (2012), 1010-1029.  doi: 10.1016/j.nonrwa.2010.10.023.  Google Scholar

[32]

J. Simon, Nonhomogeneous viscous incompressible fluids: Existence of velocity, density, and pressure, SIAM J. Math. Anal., 21 (1990), 1093-1117.  doi: 10.1137/0521061.  Google Scholar

[33]

H. Y. Wen and C. J. Zhu, Global classical large solutions to Navier-Stokes equations for viscous compressible and heat conducting fluids with vacuum, SIAM J. Math. Anal., 45 (2013), 431-468.  doi: 10.1137/120877829.  Google Scholar

[34]

H. Y. Wen and C. J. Zhu, Global symmetric classical and strong solutions of the full compressible Navier-Stokes equations with vacuum and large initial data, SIAM J. Math. Anal., 102 (2014), 498-545.  doi: 10.1016/j.matpur.2013.12.003.  Google Scholar

[1]

Fei Jiang, Song Jiang, Junpin Yin. Global weak solutions to the two-dimensional Navier-Stokes equations of compressible heat-conducting flows with symmetric data and forces. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 567-587. doi: 10.3934/dcds.2014.34.567

[2]

Eduard Feireisl, Dalibor Pražák. A stabilizing effect of a high-frequency driving force on the motion of a viscous, compressible, and heat conducting fluid. Discrete & Continuous Dynamical Systems - S, 2009, 2 (1) : 95-111. doi: 10.3934/dcdss.2009.2.95

[3]

Chunhua Jin. Global classical solution and stability to a coupled chemotaxis-fluid model with logistic source. Discrete & Continuous Dynamical Systems - A, 2018, 38 (7) : 3547-3566. doi: 10.3934/dcds.2018150

[4]

Young-Sam Kwon, Antonin Novotny. Derivation of geostrophic equations as a rigorous limit of compressible rotating and heat conducting fluids with the general initial data. Discrete & Continuous Dynamical Systems - A, 2020, 40 (1) : 395-421. doi: 10.3934/dcds.2020015

[5]

Giovambattista Amendola, Mauro Fabrizio, John Murrough Golden, Adele Manes. Energy stability for thermo-viscous fluids with a fading memory heat flux. Evolution Equations & Control Theory, 2015, 4 (3) : 265-279. doi: 10.3934/eect.2015.4.265

[6]

Peixin Zhang, Jianwen Zhang, Junning Zhao. On the global existence of classical solutions for compressible Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 1085-1103. doi: 10.3934/dcds.2016.36.1085

[7]

Xiaoli Li. Global strong solution for the incompressible flow of liquid crystals with vacuum in dimension two. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 4907-4922. doi: 10.3934/dcds.2017211

[8]

Lingbing He. On the global smooth solution to 2-D fluid/particle system. Discrete & Continuous Dynamical Systems - A, 2010, 27 (1) : 237-263. doi: 10.3934/dcds.2010.27.237

[9]

Seung-Yeal Ha, Bingkang Huang, Qinghua Xiao, Xiongtao Zhang. A global existence of classical solutions to the two-dimensional kinetic-fluid model for flocking with large initial data. Communications on Pure & Applied Analysis, 2020, 19 (2) : 835-882. doi: 10.3934/cpaa.2020039

[10]

Šárka Nečasová, Joerg Wolf. On the existence of global strong solutions to the equations modeling a motion of a rigid body around a viscous fluid. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1539-1562. doi: 10.3934/dcds.2016.36.1539

[11]

Eduard Feireisl. Mathematical theory of viscous fluids: Retrospective and future perspectives. Discrete & Continuous Dynamical Systems - A, 2010, 27 (2) : 533-555. doi: 10.3934/dcds.2010.27.533

[12]

Marcelo M. Disconzi. On the existence of solutions and causality for relativistic viscous conformal fluids. Communications on Pure & Applied Analysis, 2019, 18 (4) : 1567-1599. doi: 10.3934/cpaa.2019075

[13]

Bingyuan Huang, Shijin Ding, Huanyao Wen. Local classical solutions of compressible Navier-Stokes-Smoluchowski equations with vacuum. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1717-1752. doi: 10.3934/dcdss.2016072

[14]

Feng Li, Yuxiang Li. Global existence of weak solution in a chemotaxis-fluid system with nonlinear diffusion and rotational flux. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5409-5436. doi: 10.3934/dcdsb.2019064

[15]

Diego Rapoport. Random representations of viscous fluids and the passive magnetic fields transported on them. Conference Publications, 2001, 2001 (Special) : 327-336. doi: 10.3934/proc.2001.2001.327

[16]

Allen Montz, Hamid Bellout, Frederick Bloom. Existence and uniqueness of steady flows of nonlinear bipolar viscous fluids in a cylinder. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2107-2128. doi: 10.3934/dcdsb.2015.20.2107

[17]

Boling Guo, Guangwu Wang. Existence of the solution for the viscous bipolar quantum hydrodynamic model. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3183-3210. doi: 10.3934/dcds.2017136

[18]

Youcef Amirat, Kamel Hamdache. Strong solutions to the equations of flow and heat transfer in magnetic fluids with internal rotations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3289-3320. doi: 10.3934/dcds.2013.33.3289

[19]

Chiu-Ya Lan, Chi-Kun Lin. Asymptotic behavior of the compressible viscous potential fluid: Renormalization group approach. Discrete & Continuous Dynamical Systems - A, 2004, 11 (1) : 161-188. doi: 10.3934/dcds.2004.11.161

[20]

Dominika Pilarczyk. Asymptotic stability of singular solution to nonlinear heat equation. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 991-1001. doi: 10.3934/dcds.2009.25.991

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (89)
  • HTML views (127)
  • Cited by (0)

Other articles
by authors

[Back to Top]