• Previous Article
    Sufficiently strong dispersion removes ill-posedness in truncated series models of water waves
  • DCDS Home
  • This Issue
  • Next Article
    Global classical large solution to compressible viscous micropolar and heat-conducting fluids with vacuum
June  2019, 39(6): 3099-3122. doi: 10.3934/dcds.2019128

Classification of traveling waves for a quadratic Szegő equation

Département de mathématiques et applications, école normale supérieure, CNRS, PSL Research University, 75005 Paris, France

Received  February 2018 Revised  October 2018 Published  February 2019

We give a complete classification of the traveling waves of the following quadratic Szegő equation :
$i{\partial _t}u = 2J\Pi \left( {{{\left| u \right|}^2}} \right) + \bar J{u^2},\;\;\;\;u\left( {0, \cdot } \right) = {u_0},$
and we show that they are given by two families of rational functions, one of which is generated by a stable ground state. We prove that the other branch is orbitally unstable.
Citation: Joseph Thirouin. Classification of traveling waves for a quadratic Szegő equation. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3099-3122. doi: 10.3934/dcds.2019128
References:
[1]

C. J. Amick and J. Toland, Uniqueness and related analytic properties for the Benjamin-Ono equation-a nonlinear neumann problem in the plane, Acta Mathematica, 167 (1991), 107-126.  doi: 10.1007/BF02392447.  Google Scholar

[2]

C. J. Amick and J. Toland, Uniqueness of Benjamin's solitary wave solution of the Benjamin-Ono equation, IMA J. Appl. Math., 46 (1991), 21-28.  doi: 10.1093/imamat/46.1-2.21.  Google Scholar

[3]

P. BizońB. CrapsO. EvninD. HunikV. Luyten and M. Maliborski, Conformal flow on $\mathbb S^3$ and weak field integrability in AdS4, Comm. Math. Phys., 353 (2017), 1179-1199.  doi: 10.1007/s00220-017-2896-8.  Google Scholar

[4]

P. Bizoń, D. Hunik-Kostyra and D. Pelinovsky, Ground state of the conformal flow on $\mathbb S^3$, arXiv: 1706.07726, 2017. Google Scholar

[5]

C. Fefferman, Characterizations of bounded mean oscillation, Bull. Amer. Math. Soc., 77 (1971), 587-588.  doi: 10.1090/S0002-9904-1971-12763-5.  Google Scholar

[6]

P. Gérard, P. Germain and L. Thomann, On the cubic lowest Landau level equation, arXiv: 1709.04276, 2017. Google Scholar

[7]

P. Gérard and S. Grellier, Ann. Sci. Éc. Norm. Supér. (4), Acta Mathematica, 43 (2010), 761-810.  doi: 10.24033/asens.2133.  Google Scholar

[8]

P. Gérard and S. Grellier, Invariant tori for the cubic Szegő equation, Invent. Math., 187 (2012), 707-754.  doi: 10.1007/s00222-011-0342-7.  Google Scholar

[9]

P. Gérard and S. Grellier, An explicit formula for the cubic Szegő equation, Transactions of the American Mathematical Society, 367 (2015), 2979-2995.  doi: 10.1090/S0002-9947-2014-06310-1.  Google Scholar

[10]

P. Gérard and S. Grellier, The cubic Szegő equation and Hankel operators, Astérisque, 389 (2017), vi+112pp.   Google Scholar

[11]

P. Gérard and H. Koch, The cubic Szegő flow at low regularity, In Séminaire Laurent Schwartz–Équations aux dérivées partielles et applications. Année 2016–2017, pages Exp No. XIV, 14 p. Ed. Éc. Polytech., Palaiseau, 2017.  Google Scholar

[12]

F. John and L. Nirenberg, On functions of bounded mean oscillation, Communications on Pure and Applied Mathematics, 14 (1961), 415-426.  doi: 10.1002/cpa.3160140317.  Google Scholar

[13]

O. Pocovnicu, Traveling waves for the cubic Szegő equation on the real line, Anal. PDE, 4 (2011), 379-404.  doi: 10.2140/apde.2011.4.379.  Google Scholar

[14]

O. Pocovnicu, Soliton interaction with small Toeplitz potentials for the Szegö equation on $\mathbb R$, Dyn. Partial Differ. Equ., 9 (2012), 1-27.  doi: 10.4310/DPDE.2012.v9.n1.a1.  Google Scholar

[15]

W. Rudin, Real and Complex Analysis, McGraw-Hill Book Co., New York, third edition, 1987.  Google Scholar

[16]

E. M. Stein, Harmonic Analysis : Real-Variable Methods, Orthogonality, and Oscillatory Integrals, volume 43 of Princeton Mathematical Series, Princeton University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy, Monographs in Harmonic Analysis, Ⅲ.  Google Scholar

[17]

J. Thirouin, Optimal bounds for the growth of Sobolev norms of solutions of a quadratic Szegő equation, Transactions of the Am. Math. Soc., 371 (2019), 3673-3690.  doi: 10.1090/tran/7535.  Google Scholar

[18]

Y. Wu, Simplicity and finiteness of discrete spectrum of the Benjamin-Ono scattering operator, SIAM J. Math. Anal., 48 (2016), 1348-1367.  doi: 10.1137/15M1030649.  Google Scholar

[19]

H. Xu, The cubic Szegő equation with a linear perturbation, arXiv: 1508.01500, 2015. Google Scholar

show all references

References:
[1]

C. J. Amick and J. Toland, Uniqueness and related analytic properties for the Benjamin-Ono equation-a nonlinear neumann problem in the plane, Acta Mathematica, 167 (1991), 107-126.  doi: 10.1007/BF02392447.  Google Scholar

[2]

C. J. Amick and J. Toland, Uniqueness of Benjamin's solitary wave solution of the Benjamin-Ono equation, IMA J. Appl. Math., 46 (1991), 21-28.  doi: 10.1093/imamat/46.1-2.21.  Google Scholar

[3]

P. BizońB. CrapsO. EvninD. HunikV. Luyten and M. Maliborski, Conformal flow on $\mathbb S^3$ and weak field integrability in AdS4, Comm. Math. Phys., 353 (2017), 1179-1199.  doi: 10.1007/s00220-017-2896-8.  Google Scholar

[4]

P. Bizoń, D. Hunik-Kostyra and D. Pelinovsky, Ground state of the conformal flow on $\mathbb S^3$, arXiv: 1706.07726, 2017. Google Scholar

[5]

C. Fefferman, Characterizations of bounded mean oscillation, Bull. Amer. Math. Soc., 77 (1971), 587-588.  doi: 10.1090/S0002-9904-1971-12763-5.  Google Scholar

[6]

P. Gérard, P. Germain and L. Thomann, On the cubic lowest Landau level equation, arXiv: 1709.04276, 2017. Google Scholar

[7]

P. Gérard and S. Grellier, Ann. Sci. Éc. Norm. Supér. (4), Acta Mathematica, 43 (2010), 761-810.  doi: 10.24033/asens.2133.  Google Scholar

[8]

P. Gérard and S. Grellier, Invariant tori for the cubic Szegő equation, Invent. Math., 187 (2012), 707-754.  doi: 10.1007/s00222-011-0342-7.  Google Scholar

[9]

P. Gérard and S. Grellier, An explicit formula for the cubic Szegő equation, Transactions of the American Mathematical Society, 367 (2015), 2979-2995.  doi: 10.1090/S0002-9947-2014-06310-1.  Google Scholar

[10]

P. Gérard and S. Grellier, The cubic Szegő equation and Hankel operators, Astérisque, 389 (2017), vi+112pp.   Google Scholar

[11]

P. Gérard and H. Koch, The cubic Szegő flow at low regularity, In Séminaire Laurent Schwartz–Équations aux dérivées partielles et applications. Année 2016–2017, pages Exp No. XIV, 14 p. Ed. Éc. Polytech., Palaiseau, 2017.  Google Scholar

[12]

F. John and L. Nirenberg, On functions of bounded mean oscillation, Communications on Pure and Applied Mathematics, 14 (1961), 415-426.  doi: 10.1002/cpa.3160140317.  Google Scholar

[13]

O. Pocovnicu, Traveling waves for the cubic Szegő equation on the real line, Anal. PDE, 4 (2011), 379-404.  doi: 10.2140/apde.2011.4.379.  Google Scholar

[14]

O. Pocovnicu, Soliton interaction with small Toeplitz potentials for the Szegö equation on $\mathbb R$, Dyn. Partial Differ. Equ., 9 (2012), 1-27.  doi: 10.4310/DPDE.2012.v9.n1.a1.  Google Scholar

[15]

W. Rudin, Real and Complex Analysis, McGraw-Hill Book Co., New York, third edition, 1987.  Google Scholar

[16]

E. M. Stein, Harmonic Analysis : Real-Variable Methods, Orthogonality, and Oscillatory Integrals, volume 43 of Princeton Mathematical Series, Princeton University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy, Monographs in Harmonic Analysis, Ⅲ.  Google Scholar

[17]

J. Thirouin, Optimal bounds for the growth of Sobolev norms of solutions of a quadratic Szegő equation, Transactions of the Am. Math. Soc., 371 (2019), 3673-3690.  doi: 10.1090/tran/7535.  Google Scholar

[18]

Y. Wu, Simplicity and finiteness of discrete spectrum of the Benjamin-Ono scattering operator, SIAM J. Math. Anal., 48 (2016), 1348-1367.  doi: 10.1137/15M1030649.  Google Scholar

[19]

H. Xu, The cubic Szegő equation with a linear perturbation, arXiv: 1508.01500, 2015. Google Scholar

Figure 1.  The action of $ H_u $, $ K_u $ and $ S^* $ on $ F $
[1]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[2]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[3]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[4]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[5]

Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075

[6]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[7]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[8]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[9]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[10]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[11]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

[12]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[13]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[14]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[15]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[16]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[17]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

[18]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[19]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[20]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (101)
  • HTML views (125)
  • Cited by (1)

Other articles
by authors

[Back to Top]