-
Previous Article
On the well-posedness of the inviscid multi-layer quasi-geostrophic equations
- DCDS Home
- This Issue
-
Next Article
Bounds on the growth of high discrete Sobolev norms for the cubic discrete nonlinear Schrödinger equations on $ h\mathbb{Z} $
Regularity results for the solutions of a non-local model of traffic flow
1. | Laboratoire J. A. Dieudonné, UMR 7351 CNRS, Université Côte d'Azur, LJAD, CNRS, Inria, France |
2. | Université de Nice Sophia-Antipolis, Parc Valrose, 06108 Nice cedex 2, France |
3. | Inria Sophia Antipolis - Méditerranée, Université Côte d'Azur, Inria, CNRS, LJAD, 2004 route des Lucioles - BP 93, 06902 Sophia Antipolis Cedex, France |
We consider a non-local traffic model involving a convolution product. Unlike other studies, the considered kernel is discontinuous on $ \mathbb R $. We prove Sobolev estimates and prove the convergence of approximate solutions solving a viscous and regularized non-local equation. It leads to weak, $ {{\bf{C^{}}}}([0,T], {{\bf{L^2}}}( \mathbb R)) $, and smooth, $ {\bf{W}}^{2,2N}([0,T]\times \mathbb R) $, solutions for the non-local traffic model.
References:
[1] |
A. Aggarwal, R. M. Colombo and P. Goatin,
Nonlocal systems of conservation laws in several space dimensions, SIAM J. Numer. Anal., 53 (2015), 963-983.
doi: 10.1137/140975255. |
[2] |
P. Amorim, R. Colombo and A. Teixeira,
On the numerical integration of scalar nonlocal conservation laws, ESAIM M2AN, 49 (2015), 19-37.
doi: 10.1051/m2an/2014023. |
[3] |
F. Betancourt, R. Bürger, K. H. Karlsen and E. M. Tory,
On nonlocal conservation laws modelling sedimentation, Nonlinearity, 24 (2011), 855-885.
doi: 10.1088/0951-7715/24/3/008. |
[4] |
S. Blandin and P. Goatin,
Well-posedness of a conservation law with non-local flux arising in traffic flow modeling, Numer. Math., 132 (2016), 217-241.
doi: 10.1007/s00211-015-0717-6. |
[5] |
M. Colombo, G. Crippa and L. V. Spinolo, On the singular local limit for conservation laws with nonlocal fluxes, arXiv e-prints, Oct. 2017. |
[6] |
R. M. Colombo, M. Garavello and M. Lécureux-Mercier, A class of nonlocal models for pedestrian traffic, Mathematical Models and Methods in Applied Sciences, 22 (2012), 1150023, 34p.
doi: 10.1142/S0218202511500230. |
[7] |
J. Friedrich, O. Kolb and S. Göttlich, A Godunov type scheme for a class of LWR traffic flow models with non-local flux, arXiv e-prints, Feb. 2018. |
[8] |
P. Goatin and S. Scialanga,
Well-posedness and finite volume approximations of the LWR traffic flow model with non-local velocity, Netw. Heterog. Media, 11 (2016), 107-121.
doi: 10.3934/nhm.2016.11.107. |
[9] |
S. Göttlich, S. Hoher, P. Schindler, V. Schleper and A. Verl,
Modeling, simulation and validation of material flow on conveyor belts, Applied Mathematical Modelling, 38 (2014), 3295-3313.
|
[10] |
M. Gröschel, A. Keimer, G. Leugering and Z. Wang,
Regularity theory and adjoint-based optimality conditions for a nonlinear transport equation with nonlocal velocity, SIAM J. Control Optim., 52 (2014), 2141-2163.
doi: 10.1137/120873832. |
[11] |
A. Keimer and L. Pflug,
Existence, uniqueness and regularity results on nonlocal balance laws, J. Differential Equations, 263 (2017), 4023-4069.
doi: 10.1016/j.jde.2017.05.015. |
[12] |
A. Keimer, L. Pflug and M. Spinola,
Existence, uniqueness and regularity of multi-dimensional nonlocal balance laws with damping, J. Math. Anal. Appl., 466 (2018), 18-55.
doi: 10.1016/j.jmaa.2018.05.013. |
[13] |
S. N. Kružkov,
First order quasilinear equations with several independent variables, Mat. Sb. (N.S.), 81 (1970), 228-255.
|
[14] |
D. Li and T. Li,
Shock formation in a traffic flow model with Arrhenius look-ahead dynamics, Networks and Heterogeneous Media, 6 (2011), 681-694.
doi: 10.3934/nhm.2011.6.681. |
[15] |
E. Rossi and R. M. Colombo,
Nonlocal conservation laws in bounded domains, SIAM J. Math. Anal., 50 (2018), 4041-4065.
doi: 10.1137/18M1171783. |
[16] |
A. Sopasakis and M. A. Katsoulakis,
Stochastic modeling and simulation of traffic flow: Asymmetric single exclusion process with Arrhenius look-ahead dynamics, SIAM J. Appl. Math., 66 (2006), 921-944 (electronic).
doi: 10.1137/040617790. |
show all references
References:
[1] |
A. Aggarwal, R. M. Colombo and P. Goatin,
Nonlocal systems of conservation laws in several space dimensions, SIAM J. Numer. Anal., 53 (2015), 963-983.
doi: 10.1137/140975255. |
[2] |
P. Amorim, R. Colombo and A. Teixeira,
On the numerical integration of scalar nonlocal conservation laws, ESAIM M2AN, 49 (2015), 19-37.
doi: 10.1051/m2an/2014023. |
[3] |
F. Betancourt, R. Bürger, K. H. Karlsen and E. M. Tory,
On nonlocal conservation laws modelling sedimentation, Nonlinearity, 24 (2011), 855-885.
doi: 10.1088/0951-7715/24/3/008. |
[4] |
S. Blandin and P. Goatin,
Well-posedness of a conservation law with non-local flux arising in traffic flow modeling, Numer. Math., 132 (2016), 217-241.
doi: 10.1007/s00211-015-0717-6. |
[5] |
M. Colombo, G. Crippa and L. V. Spinolo, On the singular local limit for conservation laws with nonlocal fluxes, arXiv e-prints, Oct. 2017. |
[6] |
R. M. Colombo, M. Garavello and M. Lécureux-Mercier, A class of nonlocal models for pedestrian traffic, Mathematical Models and Methods in Applied Sciences, 22 (2012), 1150023, 34p.
doi: 10.1142/S0218202511500230. |
[7] |
J. Friedrich, O. Kolb and S. Göttlich, A Godunov type scheme for a class of LWR traffic flow models with non-local flux, arXiv e-prints, Feb. 2018. |
[8] |
P. Goatin and S. Scialanga,
Well-posedness and finite volume approximations of the LWR traffic flow model with non-local velocity, Netw. Heterog. Media, 11 (2016), 107-121.
doi: 10.3934/nhm.2016.11.107. |
[9] |
S. Göttlich, S. Hoher, P. Schindler, V. Schleper and A. Verl,
Modeling, simulation and validation of material flow on conveyor belts, Applied Mathematical Modelling, 38 (2014), 3295-3313.
|
[10] |
M. Gröschel, A. Keimer, G. Leugering and Z. Wang,
Regularity theory and adjoint-based optimality conditions for a nonlinear transport equation with nonlocal velocity, SIAM J. Control Optim., 52 (2014), 2141-2163.
doi: 10.1137/120873832. |
[11] |
A. Keimer and L. Pflug,
Existence, uniqueness and regularity results on nonlocal balance laws, J. Differential Equations, 263 (2017), 4023-4069.
doi: 10.1016/j.jde.2017.05.015. |
[12] |
A. Keimer, L. Pflug and M. Spinola,
Existence, uniqueness and regularity of multi-dimensional nonlocal balance laws with damping, J. Math. Anal. Appl., 466 (2018), 18-55.
doi: 10.1016/j.jmaa.2018.05.013. |
[13] |
S. N. Kružkov,
First order quasilinear equations with several independent variables, Mat. Sb. (N.S.), 81 (1970), 228-255.
|
[14] |
D. Li and T. Li,
Shock formation in a traffic flow model with Arrhenius look-ahead dynamics, Networks and Heterogeneous Media, 6 (2011), 681-694.
doi: 10.3934/nhm.2011.6.681. |
[15] |
E. Rossi and R. M. Colombo,
Nonlocal conservation laws in bounded domains, SIAM J. Math. Anal., 50 (2018), 4041-4065.
doi: 10.1137/18M1171783. |
[16] |
A. Sopasakis and M. A. Katsoulakis,
Stochastic modeling and simulation of traffic flow: Asymmetric single exclusion process with Arrhenius look-ahead dynamics, SIAM J. Appl. Math., 66 (2006), 921-944 (electronic).
doi: 10.1137/040617790. |
[1] |
Jan Friedrich, Oliver Kolb, Simone Göttlich. A Godunov type scheme for a class of LWR traffic flow models with non-local flux. Networks and Heterogeneous Media, 2018, 13 (4) : 531-547. doi: 10.3934/nhm.2018024 |
[2] |
Felisia Angela Chiarello, Paola Goatin. Non-local multi-class traffic flow models. Networks and Heterogeneous Media, 2019, 14 (2) : 371-387. doi: 10.3934/nhm.2019015 |
[3] |
Maria Laura Delle Monache, Paola Goatin. Stability estimates for scalar conservation laws with moving flux constraints. Networks and Heterogeneous Media, 2017, 12 (2) : 245-258. doi: 10.3934/nhm.2017010 |
[4] |
Wen Shen. Traveling waves for conservation laws with nonlocal flux for traffic flow on rough roads. Networks and Heterogeneous Media, 2019, 14 (4) : 709-732. doi: 10.3934/nhm.2019028 |
[5] |
Boris Andreianov, Kenneth H. Karlsen, Nils H. Risebro. On vanishing viscosity approximation of conservation laws with discontinuous flux. Networks and Heterogeneous Media, 2010, 5 (3) : 617-633. doi: 10.3934/nhm.2010.5.617 |
[6] |
Adimurthi , Shyam Sundar Ghoshal, G. D. Veerappa Gowda. Exact controllability of scalar conservation laws with strict convex flux. Mathematical Control and Related Fields, 2014, 4 (4) : 401-449. doi: 10.3934/mcrf.2014.4.401 |
[7] |
Darko Mitrovic. New entropy conditions for scalar conservation laws with discontinuous flux. Discrete and Continuous Dynamical Systems, 2011, 30 (4) : 1191-1210. doi: 10.3934/dcds.2011.30.1191 |
[8] |
Shijin Deng, Weike Wang. Pointwise estimates of solutions for the multi-dimensional scalar conservation laws with relaxation. Discrete and Continuous Dynamical Systems, 2011, 30 (4) : 1107-1138. doi: 10.3934/dcds.2011.30.1107 |
[9] |
Mauro Garavello, Roberto Natalini, Benedetto Piccoli, Andrea Terracina. Conservation laws with discontinuous flux. Networks and Heterogeneous Media, 2007, 2 (1) : 159-179. doi: 10.3934/nhm.2007.2.159 |
[10] |
Paola Goatin, Sheila Scialanga. Well-posedness and finite volume approximations of the LWR traffic flow model with non-local velocity. Networks and Heterogeneous Media, 2016, 11 (1) : 107-121. doi: 10.3934/nhm.2016.11.107 |
[11] |
Alberto Bressan, Khai T. Nguyen. Conservation law models for traffic flow on a network of roads. Networks and Heterogeneous Media, 2015, 10 (2) : 255-293. doi: 10.3934/nhm.2015.10.255 |
[12] |
Michiel Bertsch, Flavia Smarrazzo, Andrea Terracina, Alberto Tesei. Signed Radon measure-valued solutions of flux saturated scalar conservation laws. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3143-3169. doi: 10.3934/dcds.2020041 |
[13] |
Marco Di Francesco, Graziano Stivaletta. Convergence of the follow-the-leader scheme for scalar conservation laws with space dependent flux. Discrete and Continuous Dynamical Systems, 2020, 40 (1) : 233-266. doi: 10.3934/dcds.2020010 |
[14] |
Stefano Bianchini, Elio Marconi. On the concentration of entropy for scalar conservation laws. Discrete and Continuous Dynamical Systems - S, 2016, 9 (1) : 73-88. doi: 10.3934/dcdss.2016.9.73 |
[15] |
Anupam Sen, T. Raja Sekhar. Structural stability of the Riemann solution for a strictly hyperbolic system of conservation laws with flux approximation. Communications on Pure and Applied Analysis, 2019, 18 (2) : 931-942. doi: 10.3934/cpaa.2019045 |
[16] |
Julien Jimenez. Scalar conservation law with discontinuous flux in a bounded domain. Conference Publications, 2007, 2007 (Special) : 520-530. doi: 10.3934/proc.2007.2007.520 |
[17] |
Hongjie Dong, Doyoon Kim. Schauder estimates for a class of non-local elliptic equations. Discrete and Continuous Dynamical Systems, 2013, 33 (6) : 2319-2347. doi: 10.3934/dcds.2013.33.2319 |
[18] |
Laurent Lévi, Julien Jimenez. Coupling of scalar conservation laws in stratified porous media. Conference Publications, 2007, 2007 (Special) : 644-654. doi: 10.3934/proc.2007.2007.644 |
[19] |
Georges Bastin, B. Haut, Jean-Michel Coron, Brigitte d'Andréa-Novel. Lyapunov stability analysis of networks of scalar conservation laws. Networks and Heterogeneous Media, 2007, 2 (4) : 751-759. doi: 10.3934/nhm.2007.2.751 |
[20] |
Yanan Li, Alexandre N. Carvalho, Tito L. M. Luna, Estefani M. Moreira. A non-autonomous bifurcation problem for a non-local scalar one-dimensional parabolic equation. Communications on Pure and Applied Analysis, 2020, 19 (11) : 5181-5196. doi: 10.3934/cpaa.2020232 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]