June  2019, 39(6): 3215-3237. doi: 10.3934/dcds.2019133

On the well-posedness of the inviscid multi-layer quasi-geostrophic equations

Department of Mathematical Sciences, Clemson University, Clemson, SC 29631, USA

* Corresponding author: Qingshan Chen

Received  June 2018 Revised  November 2018 Published  February 2019

Fund Project: The first author is in part supported by Simons Foundation (319070).

The inviscid multi-layer quasi-geostrophic equations are considered over an arbitrary bounded domain. The no-flux but non-homogeneous boundary conditions are imposed to accommodate the free fluctuations of the top and layer interfaces. Using the barotropic and baroclinic modes in the vertical direction, the elliptic system governing the streamfunctions and the potential vorticity is decomposed into a sequence of scalar elliptic boundary value problems, where the regularity theories from the two-dimensional case can be applied. With the initial potential vorticity being essentially bounded, the multi-layer quasi-equations are then shown to be globally well-posed, and the initial and boundary conditions are satisfied in the classical sense.

Citation: Qingshan Chen. On the well-posedness of the inviscid multi-layer quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3215-3237. doi: 10.3934/dcds.2019133
References:
[1]

G. Alberti, S. Bianchini and G. Crippa, Structure of level sets and sard-type properties of lipschitz maps. Google Scholar

[2]

G. AlbertiS. Bianchini and G. Crippa, A uniqueness result for the continuity equation in two dimensions, J. Eur. Math. Soc., 16 (2014), 201-234.  doi: 10.4171/JEMS/431.  Google Scholar

[3]

C. Bardos, Existence et unicité de la solution de l'équation d'Euler en dimension deux, J. Math. Anal. Appl., 40 (1972), 769-790.  doi: 10.1016/0022-247X(72)90019-4.  Google Scholar

[4]

C. Bardos and È. S. Titi, Euler equations for an ideal incompressible fluid, Russian Mathematical Surveys, 62 (2007), 5-46.  doi: 10.1070/RM2007v062n03ABEH004410.  Google Scholar

[5]

J. T. BealeT. Kato and A. Majda, Remarks on th e breakdow n of smooth solutions for the 3-D euler equations, Commun. Math. Phys., 94 (1984), 61-66.  doi: 10.1007/BF01212349.  Google Scholar

[6]

A. J. Bourgeois and J. T. Beale, Validity of the quasigeostrophic model for large-scale flow in the atmosphere and ocean, SIAM J. Math. Anal., 25 (1994), 1023-1068.  doi: 10.1137/S0036141092234980.  Google Scholar

[7]

A. Castro, D. Córdoba and J. Gómez-Serrano, Global smooth solutions for the inviscid SQG equation, arXiv: 1603.03325. Google Scholar

[8]

Q. Chen, The barotropic quasi-geostrophic equation under a free surface., SIAM J. Math. Anal., to appear. Google Scholar

[9]

P. Constantin, On the euler equations of incompressible fluids, Bull. Am. Math. Soc., 44 (2007), 603-621.  doi: 10.1090/S0273-0979-07-01184-6.  Google Scholar

[10]

P. Constantin and C. Fefferman, Direction of vorticity and the problem of global regularity for the Navier-Stokes equations, Indiana Univ. Math. J., 42 (1993), 775-789.  doi: 10.1512/iumj.1993.42.42034.  Google Scholar

[11]

B. Desjardins and E. Grenier, Derivation of quasi-geostrophic potential vorticity equations, Adv. Differential Equations, 3 (1998), 715-752.   Google Scholar

[12]

R. J. DiPerna and P. L. Lions, Ordinary differential equations, transport theory and sobolev spaces, Invent. Math., 98 (1989), 511-547.  doi: 10.1007/BF01393835.  Google Scholar

[13]

J. A. Dutton, The nonlinear quasi-geostrophic equation- Existence and uniqueness of solutions on a bounded domain, J. Atmos. Sci., 31 (1974), 422-433.  doi: 10.1175/1520-0469(1974)031<0422:TNQGEE>2.0.CO;2.  Google Scholar

[14]

J. A. Dutton, The Nonlinear Quasi-Geostrophic Equation. Part Ⅱ: Predictability, Recurrence and Limit Properties of Thermally-Forced and Unforced Flows, J. Atmos. Sci., 33 (1976), 1431-1453.  doi: 10.1175/1520-0469(1976)033<1431:TNQGEP>2.0.CO;2.  Google Scholar

[15]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, 1983. doi: 10.1007/978-3-642-61798-0.  Google Scholar

[16]

O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, Second English edition, revised and enlarged. Translated from the Russian by Richard A. Silverman and John Chu. Mathematics and its Applications, Vol. 2, Gordon and Breach, Science Publishers, New York-London-Paris, 1969.  Google Scholar

[17]

E. N. Lorenz, Reflections on the conception, birth, and childhood of numerical weather prediction, Annu. Rev. Earth Planet. Sci., 34 (2006), 37-45.  doi: 10.1146/annurev.earth.34.083105.102317.  Google Scholar

[18]

C. Marchioro and M. Pulvirenti, Mathematical Theory of Incompressible Nonviscous Fluids, vol. 96 of Applied Mathematical Sciences, Springer-Verlag, New York, 1994. doi: 10.1007/978-1-4612-4284-0.  Google Scholar

[19]

M. D. Novack, On the weak solutions to the 3D inviscid Quasi-Geostrophic system. Google Scholar

[20]

M. D. Novack and A. F. Vasseur, Global in time classical solutions to the 3D quasi-geostrophic system for large initial data, Communications in Mathematical Physics, 358 (2018), 237-267.  doi: 10.1007/s00220-017-3049-9.  Google Scholar

[21]

J. Pedlosky, Geophysical Fluid Dynamics, 2nd edition, Springer, 1987. Google Scholar

[22]

M. Puel and A. F. Vasseur, Global Weak Solutions to the Inviscid 3D Quasi-Geostrophic Equation, Commun. Math. Phys., 339 (2015), 1063-1082.  doi: 10.1007/s00220-015-2428-3.  Google Scholar

[23]

L. Talley, Descriptive Physical Oceanography, 6th edition, Elsevier, 2011. Google Scholar

[24]

R. Temam, Navier-Stokes equations, AMS Chelsea Publishing, Providence, RI, 2001. doi: 10.1090/chel/343.  Google Scholar

[25] G. K. Vallis, Atmospheric and Oceanic Fluid Dynamics, 2nd edition, Cambridge University Press, 2017.   Google Scholar
[26]

V. I. Yudovich, Non-stationary flow of an ideal incompressible liquid, USSR Computational Mathematics and Mathematical Physics, 3 (1963), 1407-1456.   Google Scholar

show all references

References:
[1]

G. Alberti, S. Bianchini and G. Crippa, Structure of level sets and sard-type properties of lipschitz maps. Google Scholar

[2]

G. AlbertiS. Bianchini and G. Crippa, A uniqueness result for the continuity equation in two dimensions, J. Eur. Math. Soc., 16 (2014), 201-234.  doi: 10.4171/JEMS/431.  Google Scholar

[3]

C. Bardos, Existence et unicité de la solution de l'équation d'Euler en dimension deux, J. Math. Anal. Appl., 40 (1972), 769-790.  doi: 10.1016/0022-247X(72)90019-4.  Google Scholar

[4]

C. Bardos and È. S. Titi, Euler equations for an ideal incompressible fluid, Russian Mathematical Surveys, 62 (2007), 5-46.  doi: 10.1070/RM2007v062n03ABEH004410.  Google Scholar

[5]

J. T. BealeT. Kato and A. Majda, Remarks on th e breakdow n of smooth solutions for the 3-D euler equations, Commun. Math. Phys., 94 (1984), 61-66.  doi: 10.1007/BF01212349.  Google Scholar

[6]

A. J. Bourgeois and J. T. Beale, Validity of the quasigeostrophic model for large-scale flow in the atmosphere and ocean, SIAM J. Math. Anal., 25 (1994), 1023-1068.  doi: 10.1137/S0036141092234980.  Google Scholar

[7]

A. Castro, D. Córdoba and J. Gómez-Serrano, Global smooth solutions for the inviscid SQG equation, arXiv: 1603.03325. Google Scholar

[8]

Q. Chen, The barotropic quasi-geostrophic equation under a free surface., SIAM J. Math. Anal., to appear. Google Scholar

[9]

P. Constantin, On the euler equations of incompressible fluids, Bull. Am. Math. Soc., 44 (2007), 603-621.  doi: 10.1090/S0273-0979-07-01184-6.  Google Scholar

[10]

P. Constantin and C. Fefferman, Direction of vorticity and the problem of global regularity for the Navier-Stokes equations, Indiana Univ. Math. J., 42 (1993), 775-789.  doi: 10.1512/iumj.1993.42.42034.  Google Scholar

[11]

B. Desjardins and E. Grenier, Derivation of quasi-geostrophic potential vorticity equations, Adv. Differential Equations, 3 (1998), 715-752.   Google Scholar

[12]

R. J. DiPerna and P. L. Lions, Ordinary differential equations, transport theory and sobolev spaces, Invent. Math., 98 (1989), 511-547.  doi: 10.1007/BF01393835.  Google Scholar

[13]

J. A. Dutton, The nonlinear quasi-geostrophic equation- Existence and uniqueness of solutions on a bounded domain, J. Atmos. Sci., 31 (1974), 422-433.  doi: 10.1175/1520-0469(1974)031<0422:TNQGEE>2.0.CO;2.  Google Scholar

[14]

J. A. Dutton, The Nonlinear Quasi-Geostrophic Equation. Part Ⅱ: Predictability, Recurrence and Limit Properties of Thermally-Forced and Unforced Flows, J. Atmos. Sci., 33 (1976), 1431-1453.  doi: 10.1175/1520-0469(1976)033<1431:TNQGEP>2.0.CO;2.  Google Scholar

[15]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, 1983. doi: 10.1007/978-3-642-61798-0.  Google Scholar

[16]

O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, Second English edition, revised and enlarged. Translated from the Russian by Richard A. Silverman and John Chu. Mathematics and its Applications, Vol. 2, Gordon and Breach, Science Publishers, New York-London-Paris, 1969.  Google Scholar

[17]

E. N. Lorenz, Reflections on the conception, birth, and childhood of numerical weather prediction, Annu. Rev. Earth Planet. Sci., 34 (2006), 37-45.  doi: 10.1146/annurev.earth.34.083105.102317.  Google Scholar

[18]

C. Marchioro and M. Pulvirenti, Mathematical Theory of Incompressible Nonviscous Fluids, vol. 96 of Applied Mathematical Sciences, Springer-Verlag, New York, 1994. doi: 10.1007/978-1-4612-4284-0.  Google Scholar

[19]

M. D. Novack, On the weak solutions to the 3D inviscid Quasi-Geostrophic system. Google Scholar

[20]

M. D. Novack and A. F. Vasseur, Global in time classical solutions to the 3D quasi-geostrophic system for large initial data, Communications in Mathematical Physics, 358 (2018), 237-267.  doi: 10.1007/s00220-017-3049-9.  Google Scholar

[21]

J. Pedlosky, Geophysical Fluid Dynamics, 2nd edition, Springer, 1987. Google Scholar

[22]

M. Puel and A. F. Vasseur, Global Weak Solutions to the Inviscid 3D Quasi-Geostrophic Equation, Commun. Math. Phys., 339 (2015), 1063-1082.  doi: 10.1007/s00220-015-2428-3.  Google Scholar

[23]

L. Talley, Descriptive Physical Oceanography, 6th edition, Elsevier, 2011. Google Scholar

[24]

R. Temam, Navier-Stokes equations, AMS Chelsea Publishing, Providence, RI, 2001. doi: 10.1090/chel/343.  Google Scholar

[25] G. K. Vallis, Atmospheric and Oceanic Fluid Dynamics, 2nd edition, Cambridge University Press, 2017.   Google Scholar
[26]

V. I. Yudovich, Non-stationary flow of an ideal incompressible liquid, USSR Computational Mathematics and Mathematical Physics, 3 (1963), 1407-1456.   Google Scholar

[1]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

[2]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[3]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[4]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[5]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[6]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[7]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[8]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[9]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[10]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[11]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[12]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[13]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[14]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[15]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[16]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[17]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[18]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[19]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[20]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (132)
  • HTML views (134)
  • Cited by (0)

Other articles
by authors

[Back to Top]