June  2019, 39(6): 3265-3289. doi: 10.3934/dcds.2019135

Multiple solutions to a weakly coupled purely critical elliptic system in bounded domains

Instituto de Matemáticas, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510 Coyoacán, CDMX, Mexico

Received  June 2018 Published  February 2019

Fund Project: Mónica Clapp was partially supported by CONACYT grant 237661 (Mexico) and UNAM-DGAPA-PAPIIT grant IN100718 (Mexico). Jorge Faya was supported by a postdoctoral fellowship under CONACYT grant 237661 (Mexico).

We study the weakly coupled critical elliptic system
$ \begin{equation*} \begin{cases} -\Delta u = \mu_{1}|u|^{2^{*}-2}u+\lambda\alpha |u|^{\alpha-2}|v|^{\beta}u & \text{in }\Omega,\\ -\Delta v = \mu_{2}|v|^{2^{*}-2}v+\lambda\beta |u|^{\alpha}|v|^{\beta-2}v & \text{in }\Omega,\\ u = v = 0 & \text{on }\partial\Omega, \end{cases} \end{equation*} $
where
$ \Omega $
is a bounded smooth domain in
$ \mathbb{R}^{N} $
,
$ N\geq 3 $
,
$ 2^{*}: = \frac{2N}{N-2} $
is the critical Sobolev exponent,
$ \mu_{1},\mu_{2}>0 $
,
$ \alpha, \beta>1 $
,
$ \alpha+\beta = 2^{*} $
and
$ \lambda\in\mathbb{R} $
.
We establish the existence of a prescribed number of fully nontrivial solutions to this system under suitable symmetry assumptions on
$ \Omega $
, which allow domains with finite symmetries, and we show that the positive least energy symmetric solution exhibits phase separation as
$ \lambda\to -\infty $
.
We also obtain existence of infinitely many solutions to this system in
$ \Omega = \mathbb{R}^N $
.
Citation: Mónica Clapp, Jorge Faya. Multiple solutions to a weakly coupled purely critical elliptic system in bounded domains. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3265-3289. doi: 10.3934/dcds.2019135
References:
[1]

A. Bahri and J.-M. Coron, On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain, Comm. Pure Appl. Math., 41 (1988), 253-294.  doi: 10.1002/cpa.3160410302.  Google Scholar

[2]

A. CastroJ. Cossio and J. M. Neuberger, A sign-changing solution for a superlinear Dirichlet problem, Rocky Mountain J. Math., 27 (1997), 1041-1053.  doi: 10.1216/rmjm/1181071858.  Google Scholar

[3]

Z. Chen and W. Zou, Positive least energy solutions and phase separation for coupled Schrödinger equations with critical exponent, Arch. Ration. Mech. Anal., 205 (2012), 515-551.  doi: 10.1007/s00205-012-0513-8.  Google Scholar

[4]

Z. Chen and W. Zou, Positive least energy solutions and phase separation for coupled Schrödinger equations with critical exponent: Higher dimensional case, Calc. Var. Partial Differential Equations, 52 (2015), 423-467.  doi: 10.1007/s00526-014-0717-x.  Google Scholar

[5]

M. Clapp, Entire nodal solutions to the pure critical exponent problem arising from concentration, J. Differential Equations, 261 (2016), 3042-3060.  doi: 10.1016/j.jde.2016.05.013.  Google Scholar

[6]

M. Clapp and J. Faya, Multiple solutions to the Bahri-Coron problem in some domains with nontrivial topology, Proc. Amer. Math. Soc., 141 (2013), 4339-4344.  doi: 10.1090/S0002-9939-2013-12043-5.  Google Scholar

[7]

M. Clapp and J. Faya, Multiple solutions to anisotropic critical and supercritical problems in symmetric domains, in Contributions to Nonlinear Elliptic Equations and Systems, 99-120, Progr. Nonlinear Differential Equations Appl., 86, Birkhäuser/Springer, Cham, 2015. doi: 10.1007/978-3-319-19902-3_8.  Google Scholar

[8]

M. Clapp and F. Pacella, Multiple solutions to the pure critical exponent problem in domains with a hole of arbitrary size, Math. Z., 259 (2008), 575-589.  doi: 10.1007/s00209-007-0238-9.  Google Scholar

[9]

M. Clapp and A. Pistoia, Existence and phase separation of entire solutions to a pure critical competitive elliptic system, Calc. Var. Partial Differential Equations, 57 (2018), Art. 23, 20 pp. doi: 10.1007/s00526-017-1283-9.  Google Scholar

[10]

M. ContiS. Terracini and G. Verzini, Nehari's problem and competing species systems, Ann. Inst. H. Poincaré Anal. Non Linéaire, 19 (2002), 871-888.  doi: 10.1016/S0294-1449(02)00104-X.  Google Scholar

[11]

M. ContiS. Terracini and G. Verzini, Asymptotic estimates for the spatial segregation of competitive systems, Adv. Math., 195 (2005), 524-560.  doi: 10.1016/j.aim.2004.08.006.  Google Scholar

[12]

M. del PinoM. MussoF. Pacard and A. Pistoia, Large energy entire solutions for the Yamabe equation, J. Differential Equations, 251 (2011), 2568-2597.  doi: 10.1016/j.jde.2011.03.008.  Google Scholar

[13]

W. Ding, On a conformally invariant elliptic equation on $\mathbb{R}^n$, Comm. Math. Phys., 107 (1986), 331-335.  doi: 10.1007/BF01209398.  Google Scholar

[14]

B. D. EsryC. H. GreeneJ. P. Burke Jr. and J. L. Bohn, Hartree-Fock theory for double condensates, Phys. Rev. Lett., 78 (1997), 3594-3597.  doi: 10.1103/PhysRevLett.78.3594.  Google Scholar

[15]

Y. GeM. Musso and A. Pistoia, Sign changing tower of bubbles for an elliptic problem at the critical exponent in pierced non-symmetric domains, Comm. Partial Differential Equations, 35 (2010), 1419-1457.  doi: 10.1080/03605302.2010.490286.  Google Scholar

[16]

Y. GuoB. Li and J. Wei, Entire nonradial solutions for non-cooperative coupled elliptic system with critical exponents in $\mathbb{R}^3$, J. Differential Equations, 256 (2014), 3463-3495.  doi: 10.1016/j.jde.2014.02.007.  Google Scholar

[17]

J. LiuX. Liu and Z.-Q. Wang, Sign-changing solutions for coupled nonlinear Schrödinger equations with critical growth, J. Differential Equations, 261 (2016), 7194-7236.  doi: 10.1016/j.jde.2016.09.018.  Google Scholar

[18]

S. Peng, Y.-F. Peng and Z.-Q. Wang, On elliptic systems with Sobolev critical growth, Calc. Var. Partial Differential Equations, 55 (2016), Art. 142, 30 pp. doi: 10.1007/s00526-016-1091-7.  Google Scholar

[19]

A. Pistoia and N. Soave, On Coron's problem for weakly coupled elliptic systems, Proc. Lond. Math. Soc., 116 (2018), 33-67.  doi: 10.1112/plms.12073.  Google Scholar

[20]

A. Pistoia and H. Tavares, Spiked solutions for Schrödinger systems with Sobolev critical exponent: the cases of competitive and weakly cooperative interactions, J. Fixed Point Theory Appl., 19 (2017), 407-446.  doi: 10.1007/s11784-016-0360-6.  Google Scholar

[21]

N. Soave, On existence and phase separation of solitary waves for nonlinear Schrödinger systems modelling simultaneous cooperation and competition, Calc. Var. Partial Differential Equations, 53 (2015), 689-718.  doi: 10.1007/s00526-014-0764-3.  Google Scholar

[22]

A. Szulkin, Ljusternik–Schnirelmann theory on $\mathcal{C}^1$-manifolds, Ann. Inst. H. Poincaré Anal. Non Linéaire, 5 (1988), 119-139.  doi: 10.1016/S0294-1449(16)30348-1.  Google Scholar

[23]

E. Timmermans, Phase separation of Bose-Einstein condensates, Phys. Rev. Lett., 81 (1998), 5718-5721.  doi: 10.1103/PhysRevLett.81.5718.  Google Scholar

[24]

M. Willem, Minimax Theorems, Progress in Nonlinear Differential Equations and their Applications, 24. Birkhäuser Boston, Inc., Boston, MA, 1996. doi: 10.1007/978-1-4612-4146-1.  Google Scholar

show all references

References:
[1]

A. Bahri and J.-M. Coron, On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain, Comm. Pure Appl. Math., 41 (1988), 253-294.  doi: 10.1002/cpa.3160410302.  Google Scholar

[2]

A. CastroJ. Cossio and J. M. Neuberger, A sign-changing solution for a superlinear Dirichlet problem, Rocky Mountain J. Math., 27 (1997), 1041-1053.  doi: 10.1216/rmjm/1181071858.  Google Scholar

[3]

Z. Chen and W. Zou, Positive least energy solutions and phase separation for coupled Schrödinger equations with critical exponent, Arch. Ration. Mech. Anal., 205 (2012), 515-551.  doi: 10.1007/s00205-012-0513-8.  Google Scholar

[4]

Z. Chen and W. Zou, Positive least energy solutions and phase separation for coupled Schrödinger equations with critical exponent: Higher dimensional case, Calc. Var. Partial Differential Equations, 52 (2015), 423-467.  doi: 10.1007/s00526-014-0717-x.  Google Scholar

[5]

M. Clapp, Entire nodal solutions to the pure critical exponent problem arising from concentration, J. Differential Equations, 261 (2016), 3042-3060.  doi: 10.1016/j.jde.2016.05.013.  Google Scholar

[6]

M. Clapp and J. Faya, Multiple solutions to the Bahri-Coron problem in some domains with nontrivial topology, Proc. Amer. Math. Soc., 141 (2013), 4339-4344.  doi: 10.1090/S0002-9939-2013-12043-5.  Google Scholar

[7]

M. Clapp and J. Faya, Multiple solutions to anisotropic critical and supercritical problems in symmetric domains, in Contributions to Nonlinear Elliptic Equations and Systems, 99-120, Progr. Nonlinear Differential Equations Appl., 86, Birkhäuser/Springer, Cham, 2015. doi: 10.1007/978-3-319-19902-3_8.  Google Scholar

[8]

M. Clapp and F. Pacella, Multiple solutions to the pure critical exponent problem in domains with a hole of arbitrary size, Math. Z., 259 (2008), 575-589.  doi: 10.1007/s00209-007-0238-9.  Google Scholar

[9]

M. Clapp and A. Pistoia, Existence and phase separation of entire solutions to a pure critical competitive elliptic system, Calc. Var. Partial Differential Equations, 57 (2018), Art. 23, 20 pp. doi: 10.1007/s00526-017-1283-9.  Google Scholar

[10]

M. ContiS. Terracini and G. Verzini, Nehari's problem and competing species systems, Ann. Inst. H. Poincaré Anal. Non Linéaire, 19 (2002), 871-888.  doi: 10.1016/S0294-1449(02)00104-X.  Google Scholar

[11]

M. ContiS. Terracini and G. Verzini, Asymptotic estimates for the spatial segregation of competitive systems, Adv. Math., 195 (2005), 524-560.  doi: 10.1016/j.aim.2004.08.006.  Google Scholar

[12]

M. del PinoM. MussoF. Pacard and A. Pistoia, Large energy entire solutions for the Yamabe equation, J. Differential Equations, 251 (2011), 2568-2597.  doi: 10.1016/j.jde.2011.03.008.  Google Scholar

[13]

W. Ding, On a conformally invariant elliptic equation on $\mathbb{R}^n$, Comm. Math. Phys., 107 (1986), 331-335.  doi: 10.1007/BF01209398.  Google Scholar

[14]

B. D. EsryC. H. GreeneJ. P. Burke Jr. and J. L. Bohn, Hartree-Fock theory for double condensates, Phys. Rev. Lett., 78 (1997), 3594-3597.  doi: 10.1103/PhysRevLett.78.3594.  Google Scholar

[15]

Y. GeM. Musso and A. Pistoia, Sign changing tower of bubbles for an elliptic problem at the critical exponent in pierced non-symmetric domains, Comm. Partial Differential Equations, 35 (2010), 1419-1457.  doi: 10.1080/03605302.2010.490286.  Google Scholar

[16]

Y. GuoB. Li and J. Wei, Entire nonradial solutions for non-cooperative coupled elliptic system with critical exponents in $\mathbb{R}^3$, J. Differential Equations, 256 (2014), 3463-3495.  doi: 10.1016/j.jde.2014.02.007.  Google Scholar

[17]

J. LiuX. Liu and Z.-Q. Wang, Sign-changing solutions for coupled nonlinear Schrödinger equations with critical growth, J. Differential Equations, 261 (2016), 7194-7236.  doi: 10.1016/j.jde.2016.09.018.  Google Scholar

[18]

S. Peng, Y.-F. Peng and Z.-Q. Wang, On elliptic systems with Sobolev critical growth, Calc. Var. Partial Differential Equations, 55 (2016), Art. 142, 30 pp. doi: 10.1007/s00526-016-1091-7.  Google Scholar

[19]

A. Pistoia and N. Soave, On Coron's problem for weakly coupled elliptic systems, Proc. Lond. Math. Soc., 116 (2018), 33-67.  doi: 10.1112/plms.12073.  Google Scholar

[20]

A. Pistoia and H. Tavares, Spiked solutions for Schrödinger systems with Sobolev critical exponent: the cases of competitive and weakly cooperative interactions, J. Fixed Point Theory Appl., 19 (2017), 407-446.  doi: 10.1007/s11784-016-0360-6.  Google Scholar

[21]

N. Soave, On existence and phase separation of solitary waves for nonlinear Schrödinger systems modelling simultaneous cooperation and competition, Calc. Var. Partial Differential Equations, 53 (2015), 689-718.  doi: 10.1007/s00526-014-0764-3.  Google Scholar

[22]

A. Szulkin, Ljusternik–Schnirelmann theory on $\mathcal{C}^1$-manifolds, Ann. Inst. H. Poincaré Anal. Non Linéaire, 5 (1988), 119-139.  doi: 10.1016/S0294-1449(16)30348-1.  Google Scholar

[23]

E. Timmermans, Phase separation of Bose-Einstein condensates, Phys. Rev. Lett., 81 (1998), 5718-5721.  doi: 10.1103/PhysRevLett.81.5718.  Google Scholar

[24]

M. Willem, Minimax Theorems, Progress in Nonlinear Differential Equations and their Applications, 24. Birkhäuser Boston, Inc., Boston, MA, 1996. doi: 10.1007/978-1-4612-4146-1.  Google Scholar

[1]

Bopeng Rao, Zhuangyi Liu. A spectral approach to the indirect boundary control of a system of weakly coupled wave equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 399-414. doi: 10.3934/dcds.2009.23.399

[2]

Helmut Abels, Johannes Kampmann. Existence of weak solutions for a sharp interface model for phase separation on biological membranes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 331-351. doi: 10.3934/dcdss.2020325

[3]

Fang-Di Dong, Wan-Tong Li, Shi-Liang Wu, Li Zhang. Entire solutions originating from monotone fronts for nonlocal dispersal equations with bistable nonlinearity. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1031-1060. doi: 10.3934/dcdsb.2020152

[4]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[5]

Chungen Liu, Huabo Zhang. Ground state and nodal solutions for fractional Schrödinger-maxwell-kirchhoff systems with pure critical growth nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020292

[6]

Rong Chen, Shihang Pan, Baoshuai Zhang. Global conservative solutions for a modified periodic coupled Camassa-Holm system. Electronic Research Archive, 2021, 29 (1) : 1691-1708. doi: 10.3934/era.2020087

[7]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[8]

Guojie Zheng, Dihong Xu, Taige Wang. A unique continuation property for a class of parabolic differential inequalities in a bounded domain. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020280

[9]

Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270

[10]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[11]

Wenrui Hao, King-Yeung Lam, Yuan Lou. Ecological and evolutionary dynamics in advective environments: Critical domain size and boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 367-400. doi: 10.3934/dcdsb.2020283

[12]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[13]

Jann-Long Chern, Sze-Guang Yang, Zhi-You Chen, Chih-Her Chen. On the family of non-topological solutions for the elliptic system arising from a product Abelian gauge field theory. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3291-3304. doi: 10.3934/dcds.2020127

[14]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[15]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[16]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[17]

Juliana Fernandes, Liliane Maia. Blow-up and bounded solutions for a semilinear parabolic problem in a saturable medium. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1297-1318. doi: 10.3934/dcds.2020318

[18]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[19]

Xiaofeng Ren, David Shoup. The impact of the domain boundary on an inhibitory system: Interior discs and boundary half discs. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3957-3979. doi: 10.3934/dcds.2020048

[20]

Haoyu Li, Zhi-Qiang Wang. Multiple positive solutions for coupled Schrödinger equations with perturbations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020294

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (145)
  • HTML views (138)
  • Cited by (2)

Other articles
by authors

[Back to Top]