June  2019, 39(6): 3291-3313. doi: 10.3934/dcds.2019136

Existence of time-periodic strong solutions to a fluid–structure system

1. 

Institut de Mathématiques de Toulouse, Université Paul Sabatier, 118, route de Narbonne F-31062 Toulouse Cedex 9, France

2. 

School of Mathematical Sciences, Monash University, Melbourne, Australia

Received  June 2018 Revised  October 2018 Published  February 2019

Fund Project: The author is partially supported by the ANR-Project IFSMACS (ANR 15-CE40.0010).

We study a nonlinear coupled fluid–structure system modelling the blood flow through arteries. The fluid is described by the incompressible Navier–Stokes equations in a 2D rectangular domain where the upper part depends on a structure satisfying a damped Euler–Bernoulli beam equation. The system is driven by time-periodic source terms on the inflow and outflow boundaries. We prove the existence of time-periodic strong solutions for this problem under smallness assumptions for the source terms.

Citation: Jean-Jérôme Casanova. Existence of time-periodic strong solutions to a fluid–structure system. Discrete and Continuous Dynamical Systems, 2019, 39 (6) : 3291-3313. doi: 10.3934/dcds.2019136
References:
[1]

H. Amann, Linear and Quasilinear Parabolic Problems. Vol. I, vol. 89 of Monographs in Mathematics, Birkhäuser Boston, Inc., Boston, MA, 1995, Abstract linear theory. doi: 10.1007/978-3-0348-9221-6.

[2]

H. Beirão da Veiga, On the existence of strong solutions to a coupled fluid-structure evolution problem, J. Math. Fluid Mech., 6 (2004), 21-52.  doi: 10.1007/s00021-003-0082-5.

[3]

A. Bensoussan, G. Da Prato, M. C. Delfour and S. K. Mitter, Representation and Control of Infinite Dimensional Systems, 2nd edition, Systems & Control: Foundations & Applications, Birkhäuser Boston, Inc., Boston, MA, 2007. doi: 10.1007/978-0-8176-4581-6.

[4]

M. Bostan, Periodic Solutions for Evolution Equations, vol. 3 of Electronic Journal of Differential Equations. Monograph, Southwest Texas State University, San Marcos, TX, 2002, Available from: https://ejde.math.txstate.edu/Monographs/03/bostan.pdf.

[5]

J.-J. Casanova, Fluid structure system with boundary conditions involving the pressure, 2017, arXiv: 1707.06382.

[6]

S. P. Chen and R. Triggiani, Proof of extensions of two conjectures on structural damping for elastic systems, Pacific J. Math., 136 (1989), 15-55, Available from: http://projecteuclid.org/euclid.pjm/1102650841. doi: 10.2140/pjm.1989.136.15.

[7]

G. Da Prato and A. Ichikawa, Quadratic control for linear time-varying systems, SIAM J. Control Optim., 28 (1990), 359-381.  doi: 10.1137/0328019.

[8]

D. Daners and P. Koch Medina, Abstract Evolution Equations, Periodic Problems and Applications, vol. 279 of Pitman Research Notes in Mathematics Series, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1992.

[9]

G. Galdi and H. Sohr, Existence and uniqueness of time-periodic physically reasonable Navier-Stokes flow past a body, Arch. Ration. Mech. Anal., 172 (2004), 363-406.  doi: 10.1007/s00205-004-0306-9.

[10]

G. P. Galdi, Existence and uniqueness of time-periodic solutions to the Navier-Stokes equations in the whole plane, Discrete Contin. Dyn. Syst. Ser. S, 6 (2013), 1237-1257.  doi: 10.3934/dcdss.2013.6.1237.

[11]

C. Grandmont, Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate, SIAM J. Math. Anal., 40 (2008), 716-737.  doi: 10.1137/070699196.

[12]

C. Grandmont and M. Hillairet, Existence of global strong solutions to a beam-fluid interaction system, Arch. Ration. Mech. Anal., 220 (2016), 1283-1333.  doi: 10.1007/s00205-015-0954-y.

[13]

C. Grandmont, M. Hillairet and J. Lequeurre, Existence of local strong solutions to fluidbeam and fluidrod interaction systems, Ann. Inst. H. Poincaré C, Anal. non linéaire, Available from: http://www.sciencedirect.com/science/article/pii/S0294144918301148.

[14]

P. Grisvard, Elliptic Problems in Nonsmooth Domains, vol. 24 of Monographs and Studies in Mathematics, Pitman (Advanced Publishing Program), Boston, MA, 1985.

[15]

V. I. Judovič, Periodic motions of a viscous incompressible fluid, Soviet Math. Dokl., 1 (1960), 168-172. 

[16]

S. Kaniel and M. Shinbrot, A reproductive property of the Navier-Stokes equations, Arch. Rational Mech. Anal., 24 (1967), 363-369.  doi: 10.1007/BF00253153.

[17]

T. Kobayashi, Time periodic solutions of the Navier-Stokes equations under general outflow condition, Tokyo J. Math., 32 (2009), 409-424.  doi: 10.3836/tjm/1264170239.

[18]

H. Kozono and M. Nakao, Periodic solutions of the Navier-Stokes equations in unbounded domains, Tohoku Math. J. (2), 48 (1996), 33-50.  doi: 10.2748/tmj/1178225411.

[19]

M. Kyed, Time-Periodic Solutions to the Navier-Stokes Equations, Habilitation, Technische Universit t, Darmstadt, 2012, Available from: http://tuprints.ulb.tu-darmstadt.de/3309/.

[20]

J. Lequeurre, Existence of strong solutions to a fluid-structure system, SIAM J. Math. Anal., 43 (2011), 389-410.  doi: 10.1137/10078983X.

[21]

J.-L. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applications. Vol. I, Springer-Verlag, New York-Heidelberg, 1972, Translated from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften, Band 181.

[22]

J.-L. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applications. Vol. II, Springer-Verlag, New York-Heidelberg, 1972, Translated from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften, Band 182.

[23]

A. Lunardi, Bounded solutions of linear periodic abstract parabolic equations, Proc. Roy. Soc. Edinburgh Sect. A, 110 (1988), 135-159.  doi: 10.1017/S0308210500024926.

[24]

A. Lunardi, Stability of the periodic solutions to fully nonlinear parabolic equations in Banach spaces, Differential Integral Equations, 1 (1988), 253-279. 

[25]

P. Maremonti, Existence and stability of time-periodic solutions to the Navier-Stokes equations in the whole space, Nonlinearity, 4 (1991), 503-529, Available from: http://stacks.iop.org/0951-7715/4/503. doi: 10.1088/0951-7715/4/2/013.

[26]

P. Maremonti and M. Padula, Existence, uniqueness and attainability of periodic solutions of the Navier-Stokes equations in exterior domains, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 233 (1996), 142-182.  doi: 10.1007/BF02366850.

[27]

V. Maz'ya and J. Rossmann, Elliptic Equations in Polyhedral Domains, vol. 162 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 2010. doi: 10.1090/surv/162.

[28]

H. Morimoto, Survey on time periodic problem for fluid flow under inhomogeneous boundary condition, Discrete Contin. Dyn. Syst. Ser. S, 5 (2012), 631-639.  doi: 10.3934/dcdss.2012.5.631.

[29]

B. Muha and S. Čanić, Existence of a weak solution to a nonlinear fluid-structure interaction problem modeling the flow of an incompressible, viscous fluid in a cylinder with deformable walls, Arch. Ration. Mech. Anal., 207 (2013), 919-968.  doi: 10.1007/s00205-012-0585-5.

[30]

A. Pazy, Semi-groups of Linear Operators and Applications to Partial Differential Equations, Department of Mathematics, University of Maryland, College Park, Md., 1974, Department of Mathematics, University of Maryland, Lecture Note, No. 10.

[31]

G. Prodi, Qualche risultato riguardo alle equazioni di Navier-Stokes nel caso bidimensionale, Rend. Sem. Mat. Univ. Padova, 30 (1960), 1-15, Available from: http://www.numdam.org/item?id=RSMUP_1960__30__1_0.

[32]

G. Prouse, Soluzioni periodiche dell'equazione di Navier-Stokes, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8), 35 (1963), 443-447. 

[33]

J.-P. Raymond, Feedback stabilization of a fluid-structure model, SIAM J. Control Optim., 48 (2010), 5398-5443.  doi: 10.1137/080744761.

[34]

J. Serrin, A note on the existence of periodic solutions of the Navier-Stokes equations, Arch. Rational Mech. Anal., 3 (1959), 120-122.  doi: 10.1007/BF00284169.

[35]

A. Takeshita, On the reproductive property of the $2$-dimensional Navier-Stokes equations, J. Fac. Sci. Univ. Tokyo Sect. I, 16 (1969), 297-311. 

[36]

M. Yamazaki, The Navier-Stokes equations in the weak-$L^n$ space with time-dependent external force, Math. Ann., 317 (2000), 635-675.  doi: 10.1007/PL00004418.

show all references

References:
[1]

H. Amann, Linear and Quasilinear Parabolic Problems. Vol. I, vol. 89 of Monographs in Mathematics, Birkhäuser Boston, Inc., Boston, MA, 1995, Abstract linear theory. doi: 10.1007/978-3-0348-9221-6.

[2]

H. Beirão da Veiga, On the existence of strong solutions to a coupled fluid-structure evolution problem, J. Math. Fluid Mech., 6 (2004), 21-52.  doi: 10.1007/s00021-003-0082-5.

[3]

A. Bensoussan, G. Da Prato, M. C. Delfour and S. K. Mitter, Representation and Control of Infinite Dimensional Systems, 2nd edition, Systems & Control: Foundations & Applications, Birkhäuser Boston, Inc., Boston, MA, 2007. doi: 10.1007/978-0-8176-4581-6.

[4]

M. Bostan, Periodic Solutions for Evolution Equations, vol. 3 of Electronic Journal of Differential Equations. Monograph, Southwest Texas State University, San Marcos, TX, 2002, Available from: https://ejde.math.txstate.edu/Monographs/03/bostan.pdf.

[5]

J.-J. Casanova, Fluid structure system with boundary conditions involving the pressure, 2017, arXiv: 1707.06382.

[6]

S. P. Chen and R. Triggiani, Proof of extensions of two conjectures on structural damping for elastic systems, Pacific J. Math., 136 (1989), 15-55, Available from: http://projecteuclid.org/euclid.pjm/1102650841. doi: 10.2140/pjm.1989.136.15.

[7]

G. Da Prato and A. Ichikawa, Quadratic control for linear time-varying systems, SIAM J. Control Optim., 28 (1990), 359-381.  doi: 10.1137/0328019.

[8]

D. Daners and P. Koch Medina, Abstract Evolution Equations, Periodic Problems and Applications, vol. 279 of Pitman Research Notes in Mathematics Series, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1992.

[9]

G. Galdi and H. Sohr, Existence and uniqueness of time-periodic physically reasonable Navier-Stokes flow past a body, Arch. Ration. Mech. Anal., 172 (2004), 363-406.  doi: 10.1007/s00205-004-0306-9.

[10]

G. P. Galdi, Existence and uniqueness of time-periodic solutions to the Navier-Stokes equations in the whole plane, Discrete Contin. Dyn. Syst. Ser. S, 6 (2013), 1237-1257.  doi: 10.3934/dcdss.2013.6.1237.

[11]

C. Grandmont, Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate, SIAM J. Math. Anal., 40 (2008), 716-737.  doi: 10.1137/070699196.

[12]

C. Grandmont and M. Hillairet, Existence of global strong solutions to a beam-fluid interaction system, Arch. Ration. Mech. Anal., 220 (2016), 1283-1333.  doi: 10.1007/s00205-015-0954-y.

[13]

C. Grandmont, M. Hillairet and J. Lequeurre, Existence of local strong solutions to fluidbeam and fluidrod interaction systems, Ann. Inst. H. Poincaré C, Anal. non linéaire, Available from: http://www.sciencedirect.com/science/article/pii/S0294144918301148.

[14]

P. Grisvard, Elliptic Problems in Nonsmooth Domains, vol. 24 of Monographs and Studies in Mathematics, Pitman (Advanced Publishing Program), Boston, MA, 1985.

[15]

V. I. Judovič, Periodic motions of a viscous incompressible fluid, Soviet Math. Dokl., 1 (1960), 168-172. 

[16]

S. Kaniel and M. Shinbrot, A reproductive property of the Navier-Stokes equations, Arch. Rational Mech. Anal., 24 (1967), 363-369.  doi: 10.1007/BF00253153.

[17]

T. Kobayashi, Time periodic solutions of the Navier-Stokes equations under general outflow condition, Tokyo J. Math., 32 (2009), 409-424.  doi: 10.3836/tjm/1264170239.

[18]

H. Kozono and M. Nakao, Periodic solutions of the Navier-Stokes equations in unbounded domains, Tohoku Math. J. (2), 48 (1996), 33-50.  doi: 10.2748/tmj/1178225411.

[19]

M. Kyed, Time-Periodic Solutions to the Navier-Stokes Equations, Habilitation, Technische Universit t, Darmstadt, 2012, Available from: http://tuprints.ulb.tu-darmstadt.de/3309/.

[20]

J. Lequeurre, Existence of strong solutions to a fluid-structure system, SIAM J. Math. Anal., 43 (2011), 389-410.  doi: 10.1137/10078983X.

[21]

J.-L. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applications. Vol. I, Springer-Verlag, New York-Heidelberg, 1972, Translated from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften, Band 181.

[22]

J.-L. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applications. Vol. II, Springer-Verlag, New York-Heidelberg, 1972, Translated from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften, Band 182.

[23]

A. Lunardi, Bounded solutions of linear periodic abstract parabolic equations, Proc. Roy. Soc. Edinburgh Sect. A, 110 (1988), 135-159.  doi: 10.1017/S0308210500024926.

[24]

A. Lunardi, Stability of the periodic solutions to fully nonlinear parabolic equations in Banach spaces, Differential Integral Equations, 1 (1988), 253-279. 

[25]

P. Maremonti, Existence and stability of time-periodic solutions to the Navier-Stokes equations in the whole space, Nonlinearity, 4 (1991), 503-529, Available from: http://stacks.iop.org/0951-7715/4/503. doi: 10.1088/0951-7715/4/2/013.

[26]

P. Maremonti and M. Padula, Existence, uniqueness and attainability of periodic solutions of the Navier-Stokes equations in exterior domains, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 233 (1996), 142-182.  doi: 10.1007/BF02366850.

[27]

V. Maz'ya and J. Rossmann, Elliptic Equations in Polyhedral Domains, vol. 162 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 2010. doi: 10.1090/surv/162.

[28]

H. Morimoto, Survey on time periodic problem for fluid flow under inhomogeneous boundary condition, Discrete Contin. Dyn. Syst. Ser. S, 5 (2012), 631-639.  doi: 10.3934/dcdss.2012.5.631.

[29]

B. Muha and S. Čanić, Existence of a weak solution to a nonlinear fluid-structure interaction problem modeling the flow of an incompressible, viscous fluid in a cylinder with deformable walls, Arch. Ration. Mech. Anal., 207 (2013), 919-968.  doi: 10.1007/s00205-012-0585-5.

[30]

A. Pazy, Semi-groups of Linear Operators and Applications to Partial Differential Equations, Department of Mathematics, University of Maryland, College Park, Md., 1974, Department of Mathematics, University of Maryland, Lecture Note, No. 10.

[31]

G. Prodi, Qualche risultato riguardo alle equazioni di Navier-Stokes nel caso bidimensionale, Rend. Sem. Mat. Univ. Padova, 30 (1960), 1-15, Available from: http://www.numdam.org/item?id=RSMUP_1960__30__1_0.

[32]

G. Prouse, Soluzioni periodiche dell'equazione di Navier-Stokes, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8), 35 (1963), 443-447. 

[33]

J.-P. Raymond, Feedback stabilization of a fluid-structure model, SIAM J. Control Optim., 48 (2010), 5398-5443.  doi: 10.1137/080744761.

[34]

J. Serrin, A note on the existence of periodic solutions of the Navier-Stokes equations, Arch. Rational Mech. Anal., 3 (1959), 120-122.  doi: 10.1007/BF00284169.

[35]

A. Takeshita, On the reproductive property of the $2$-dimensional Navier-Stokes equations, J. Fac. Sci. Univ. Tokyo Sect. I, 16 (1969), 297-311. 

[36]

M. Yamazaki, The Navier-Stokes equations in the weak-$L^n$ space with time-dependent external force, Math. Ann., 317 (2000), 635-675.  doi: 10.1007/PL00004418.

Figure 1.  Fluid-structure system.
[1]

Petr Kučera. The time-periodic solutions of the Navier-Stokes equations with mixed boundary conditions. Discrete and Continuous Dynamical Systems - S, 2010, 3 (2) : 325-337. doi: 10.3934/dcdss.2010.3.325

[2]

Eugenio Aulisa, Akif Ibragimov, Emine Yasemen Kaya-Cekin. Fluid structure interaction problem with changing thickness beam and slightly compressible fluid. Discrete and Continuous Dynamical Systems - S, 2014, 7 (6) : 1133-1148. doi: 10.3934/dcdss.2014.7.1133

[3]

Henry Jacobs, Joris Vankerschaver. Fluid-structure interaction in the Lagrange-Poincaré formalism: The Navier-Stokes and inviscid regimes. Journal of Geometric Mechanics, 2014, 6 (1) : 39-66. doi: 10.3934/jgm.2014.6.39

[4]

Emine Kaya, Eugenio Aulisa, Akif Ibragimov, Padmanabhan Seshaiyer. A stability estimate for fluid structure interaction problem with non-linear beam. Conference Publications, 2009, 2009 (Special) : 424-432. doi: 10.3934/proc.2009.2009.424

[5]

Emine Kaya, Eugenio Aulisa, Akif Ibragimov, Padmanabhan Seshaiyer. FLUID STRUCTURE INTERACTION PROBLEM WITH CHANGING THICKNESS NON-LINEAR BEAM Fluid structure interaction problem with changing thickness non-linear beam. Conference Publications, 2011, 2011 (Special) : 813-823. doi: 10.3934/proc.2011.2011.813

[6]

George Avalos, Roberto Triggiani. Uniform stabilization of a coupled PDE system arising in fluid-structure interaction with boundary dissipation at the interface. Discrete and Continuous Dynamical Systems, 2008, 22 (4) : 817-833. doi: 10.3934/dcds.2008.22.817

[7]

Chérif Amrouche, Nour El Houda Seloula. $L^p$-theory for the Navier-Stokes equations with pressure boundary conditions. Discrete and Continuous Dynamical Systems - S, 2013, 6 (5) : 1113-1137. doi: 10.3934/dcdss.2013.6.1113

[8]

Laurence Cherfils, Madalina Petcu. On the viscous Cahn-Hilliard-Navier-Stokes equations with dynamic boundary conditions. Communications on Pure and Applied Analysis, 2016, 15 (4) : 1419-1449. doi: 10.3934/cpaa.2016.15.1419

[9]

Sylvie Monniaux. Various boundary conditions for Navier-Stokes equations in bounded Lipschitz domains. Discrete and Continuous Dynamical Systems - S, 2013, 6 (5) : 1355-1369. doi: 10.3934/dcdss.2013.6.1355

[10]

George Avalos, Roberto Triggiani. Semigroup well-posedness in the energy space of a parabolic-hyperbolic coupled Stokes-Lamé PDE system of fluid-structure interaction. Discrete and Continuous Dynamical Systems - S, 2009, 2 (3) : 417-447. doi: 10.3934/dcdss.2009.2.417

[11]

Igor Kukavica, Amjad Tuffaha. Solutions to a fluid-structure interaction free boundary problem. Discrete and Continuous Dynamical Systems, 2012, 32 (4) : 1355-1389. doi: 10.3934/dcds.2012.32.1355

[12]

Matthew Paddick. The strong inviscid limit of the isentropic compressible Navier-Stokes equations with Navier boundary conditions. Discrete and Continuous Dynamical Systems, 2016, 36 (5) : 2673-2709. doi: 10.3934/dcds.2016.36.2673

[13]

Quanrong Li, Shijin Ding. Global well-posedness of the Navier-Stokes equations with Navier-slip boundary conditions in a strip domain. Communications on Pure and Applied Analysis, 2021, 20 (10) : 3561-3581. doi: 10.3934/cpaa.2021121

[14]

Alessio Falocchi, Filippo Gazzola. Regularity for the 3D evolution Navier-Stokes equations under Navier boundary conditions in some Lipschitz domains. Discrete and Continuous Dynamical Systems, 2022, 42 (3) : 1185-1200. doi: 10.3934/dcds.2021151

[15]

Michal Beneš. Mixed initial-boundary value problem for the three-dimensional Navier-Stokes equations in polyhedral domains. Conference Publications, 2011, 2011 (Special) : 135-144. doi: 10.3934/proc.2011.2011.135

[16]

Yanqiong Lu, Ruyun Ma. Disconjugacy conditions and spectrum structure of clamped beam equations with two parameters. Communications on Pure and Applied Analysis, 2020, 19 (6) : 3283-3302. doi: 10.3934/cpaa.2020145

[17]

Tian Ma, Shouhong Wang. Asymptotic structure for solutions of the Navier--Stokes equations. Discrete and Continuous Dynamical Systems, 2004, 11 (1) : 189-204. doi: 10.3934/dcds.2004.11.189

[18]

Renjun Duan, Xiongfeng Yang. Stability of rarefaction wave and boundary layer for outflow problem on the two-fluid Navier-Stokes-Poisson equations. Communications on Pure and Applied Analysis, 2013, 12 (2) : 985-1014. doi: 10.3934/cpaa.2013.12.985

[19]

Salim Meddahi, David Mora. Nonconforming mixed finite element approximation of a fluid-structure interaction spectral problem. Discrete and Continuous Dynamical Systems - S, 2016, 9 (1) : 269-287. doi: 10.3934/dcdss.2016.9.269

[20]

George Avalos, Thomas J. Clark. A mixed variational formulation for the wellposedness and numerical approximation of a PDE model arising in a 3-D fluid-structure interaction. Evolution Equations and Control Theory, 2014, 3 (4) : 557-578. doi: 10.3934/eect.2014.3.557

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (194)
  • HTML views (137)
  • Cited by (1)

Other articles
by authors

[Back to Top]