June  2019, 39(6): 3315-3343. doi: 10.3934/dcds.2019137

A fractional Korn-type inequality

The University of Tennessee, Knoxville, TN 37996, USA

* Corresponding author

Received  July 2018 Revised  December 2018 Published  February 2019

Fund Project: The second author is supported by NSF grant DMS-1615726

We show that a class of spaces of vector fields whose semi-norms involve the magnitude of "directional" difference quotients is in fact equivalent to the class of fractional Sobolev spaces. The equivalence can be considered a Korn-type characterization of fractional Sobolev spaces. We use the result to understand better the energy space associated to a strongly coupled system of nonlocal equations related to a nonlocal continuum model via peridynamics. Moreover, the equivalence permits us to apply classical space embeddings in proving that weak solutions to the nonlocal system enjoy both improved differentiability and improved integrability.

Citation: James Scott, Tadele Mengesha. A fractional Korn-type inequality. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3315-3343. doi: 10.3934/dcds.2019137
References:
[1]

P. AuscherS. BortzM. Egert and O. Saari, Non-local self-improving properties: A functional analytic approach, Tunisian Journal of Mathematics, 1 (2019), 151-183.   Google Scholar

[2]

R. F. Bass and H. Ren, Meyers inequality and strong stability for stable-like operators, J. of Func. Anal, 265 (2013), 28-48.  doi: 10.1016/j.jfa.2013.03.008.  Google Scholar

[3]

S. BlattP. Reiter and A. Schikorra, Harmonic analysis meets critical knots (stationary points of the moebius energy are smooth, Trans. Amer. Math. Soc., 368 (2016), 6391-6438.  doi: 10.1090/tran/6603.  Google Scholar

[4]

J. Bourgain, H. Brezis and P. Mironescu, Another look at Sobolev spaces, in: Optimal Control and Partial Differential, Equations. A Volume in Honour of A. Bensoussans 60th Birthday, IOS Press, 2001, 439–455.  Google Scholar

[5]

K. de Leeuw and H. Mirkil, A priori estimates for differential operators in $L^{\infty}$ norm, Illinois J. Math., 8 (1964), 112-124.   Google Scholar

[6]

F. Demengel and G. Demengel, Function Spaces for the Theory of Elliptic Partial Differential Equations, Springer, 2012. doi: 10.1007/978-1-4471-2807-6.  Google Scholar

[7]

Q. Du and K. Zhou, Mathematical analysis for the peridynamic non-local continuum theory, ESIAM: Math. Modelling Numer. Anal., 45 (2011), 217-234.  doi: 10.1051/m2an/2010040.  Google Scholar

[8]

T. KuusiG. Mingione and Y. Sire, Nonlocal self-improving properties, Analysis and PDE, 8 (2015), 57-114.  doi: 10.2140/apde.2015.8.57.  Google Scholar

[9]

R. Lipton, Dynamic brittle fracture as a small horizon limit of peridynamics, Journal of Elasticity, 117 (2014), 21-50.  doi: 10.1007/s10659-013-9463-0.  Google Scholar

[10]

R. Lipton, Cohesive dynamics and fracture, Journal of Elasticity, 124 (2016), 143-191.  doi: 10.1007/s10659-015-9564-z.  Google Scholar

[11]

J. M. MartellD. MitreaI. Mitrea and M. Mitrea, The higher order regularity Dirichlet problem for elliptic systems in the upper-half space, Harmonic Analysis and Partial Differential Equations. Proceedings of the 9th International Conference on Harmonic Analysis and Partial Differential Equations, El Escorial, June 11-15, 2012, Contemporary Mathematics, 612 (2014), 123-141.  doi: 10.1090/conm/612/12228.  Google Scholar

[12]

J. M. MartellD. MitreaI. Mitrea and M. Mitrea, The Dirichlet problem for elliptic systems with data in Köthe function spaces, Revista Matemática Iberoamericana, 268 (2016), 913-970.  doi: 10.4171/RMI/903.  Google Scholar

[13]

T. Mengesha, Nonlocal Korn-type characterization of Sobolev vector fields, Commun. Contemp. Math., 14 (2012), 1250028, 28pp. doi: 10.1142/S0219199712500289.  Google Scholar

[14]

T. Mengesha, Fractional Korn and Hardy-type inequalities for vector fields in half space, To appear in Communications in Contemporary Mathematics, 2018, URL https://arXiv.org/abs/1805.06434. doi: 10.1142/S0219199718500554.  Google Scholar

[15]

T. Mengesha and Q. Du, Nonlocal constrained value problems for a linear peridynamic Navier equation, J. Elast, 116 (2014), 27-51.  doi: 10.1007/s10659-013-9456-z.  Google Scholar

[16]

T. Mengesha and Q. Du, On the variational limit of a class of nonlocal functionals related to peridynamics, Nonlinearity, 28 (2015), 3999-4035.  doi: 10.1088/0951-7715/28/11/3999.  Google Scholar

[17]

D. Mitrea, Distributions, Partial Differential Equations, and Harmonic Analysis, Springer Universitext, 2013. doi: 10.1007/978-1-4614-8208-6.  Google Scholar

[18]

E. D. NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[19]

J. A. Nitsche, On Korn's second inequality, ESAIM: M2AN, 15 (1981), 237-248.  doi: 10.1051/m2an/1981150302371.  Google Scholar

[20]

D. Ornstein, A non-inequality for differential operators in the $L^{1}$ norm, Arch. Rational Mech. Anal., 11 (1962), 40-49.  doi: 10.1007/BF00253928.  Google Scholar

[21]

A. Schikorra, Nonlinear commutators for the fractional $p-$Laplacian and applications, Math. Ann., 366 (2016), 695-720.  doi: 10.1007/s00208-015-1347-0.  Google Scholar

[22]

J. Scott and T. Mengesha, A potential space estimate for solutions of systems of nonlocal equations in peridynamics, SIAM Journal of Mathematical Analysis, 51 (2019), 86-109.  doi: 10.1137/18M1189294.  Google Scholar

[23]

S. A. Silling, Reformulation of elasticity theory for discontinuities and long-range forces, J. Mech. Phys. Solids, 48 (2000), 175-209.  doi: 10.1016/S0022-5096(99)00029-0.  Google Scholar

[24]

S. A. Silling, Linearized theory of peridynamic states, J. Elast., 99 (2010), 85-111.  doi: 10.1007/s10659-009-9234-0.  Google Scholar

[25]

S. A. SillingM. EptonO. WecknerJ. Xu and E. Askari, Peridynamic states and constitutive modeling, J. Elast., 88 (2007), 151-184.  doi: 10.1007/s10659-007-9125-1.  Google Scholar

[26] E. N. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, 1970.   Google Scholar
[27]

M. H. Taibleson, On the theory of Lipschitz spaces of distributions on Euclidean n-space: I. principal properties, Journal of Mathematics and Mechanics, 13 (1964), 407-479.   Google Scholar

[28]

H. B. Veiga and F. Crispo, On the global regularity for nonlinear systems of the $p$-Laplacian type, Discrete & Continuous Dynamical Systems, 6 (2013), 1173-1191.  doi: 10.3934/dcdss.2013.6.1173.  Google Scholar

show all references

References:
[1]

P. AuscherS. BortzM. Egert and O. Saari, Non-local self-improving properties: A functional analytic approach, Tunisian Journal of Mathematics, 1 (2019), 151-183.   Google Scholar

[2]

R. F. Bass and H. Ren, Meyers inequality and strong stability for stable-like operators, J. of Func. Anal, 265 (2013), 28-48.  doi: 10.1016/j.jfa.2013.03.008.  Google Scholar

[3]

S. BlattP. Reiter and A. Schikorra, Harmonic analysis meets critical knots (stationary points of the moebius energy are smooth, Trans. Amer. Math. Soc., 368 (2016), 6391-6438.  doi: 10.1090/tran/6603.  Google Scholar

[4]

J. Bourgain, H. Brezis and P. Mironescu, Another look at Sobolev spaces, in: Optimal Control and Partial Differential, Equations. A Volume in Honour of A. Bensoussans 60th Birthday, IOS Press, 2001, 439–455.  Google Scholar

[5]

K. de Leeuw and H. Mirkil, A priori estimates for differential operators in $L^{\infty}$ norm, Illinois J. Math., 8 (1964), 112-124.   Google Scholar

[6]

F. Demengel and G. Demengel, Function Spaces for the Theory of Elliptic Partial Differential Equations, Springer, 2012. doi: 10.1007/978-1-4471-2807-6.  Google Scholar

[7]

Q. Du and K. Zhou, Mathematical analysis for the peridynamic non-local continuum theory, ESIAM: Math. Modelling Numer. Anal., 45 (2011), 217-234.  doi: 10.1051/m2an/2010040.  Google Scholar

[8]

T. KuusiG. Mingione and Y. Sire, Nonlocal self-improving properties, Analysis and PDE, 8 (2015), 57-114.  doi: 10.2140/apde.2015.8.57.  Google Scholar

[9]

R. Lipton, Dynamic brittle fracture as a small horizon limit of peridynamics, Journal of Elasticity, 117 (2014), 21-50.  doi: 10.1007/s10659-013-9463-0.  Google Scholar

[10]

R. Lipton, Cohesive dynamics and fracture, Journal of Elasticity, 124 (2016), 143-191.  doi: 10.1007/s10659-015-9564-z.  Google Scholar

[11]

J. M. MartellD. MitreaI. Mitrea and M. Mitrea, The higher order regularity Dirichlet problem for elliptic systems in the upper-half space, Harmonic Analysis and Partial Differential Equations. Proceedings of the 9th International Conference on Harmonic Analysis and Partial Differential Equations, El Escorial, June 11-15, 2012, Contemporary Mathematics, 612 (2014), 123-141.  doi: 10.1090/conm/612/12228.  Google Scholar

[12]

J. M. MartellD. MitreaI. Mitrea and M. Mitrea, The Dirichlet problem for elliptic systems with data in Köthe function spaces, Revista Matemática Iberoamericana, 268 (2016), 913-970.  doi: 10.4171/RMI/903.  Google Scholar

[13]

T. Mengesha, Nonlocal Korn-type characterization of Sobolev vector fields, Commun. Contemp. Math., 14 (2012), 1250028, 28pp. doi: 10.1142/S0219199712500289.  Google Scholar

[14]

T. Mengesha, Fractional Korn and Hardy-type inequalities for vector fields in half space, To appear in Communications in Contemporary Mathematics, 2018, URL https://arXiv.org/abs/1805.06434. doi: 10.1142/S0219199718500554.  Google Scholar

[15]

T. Mengesha and Q. Du, Nonlocal constrained value problems for a linear peridynamic Navier equation, J. Elast, 116 (2014), 27-51.  doi: 10.1007/s10659-013-9456-z.  Google Scholar

[16]

T. Mengesha and Q. Du, On the variational limit of a class of nonlocal functionals related to peridynamics, Nonlinearity, 28 (2015), 3999-4035.  doi: 10.1088/0951-7715/28/11/3999.  Google Scholar

[17]

D. Mitrea, Distributions, Partial Differential Equations, and Harmonic Analysis, Springer Universitext, 2013. doi: 10.1007/978-1-4614-8208-6.  Google Scholar

[18]

E. D. NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[19]

J. A. Nitsche, On Korn's second inequality, ESAIM: M2AN, 15 (1981), 237-248.  doi: 10.1051/m2an/1981150302371.  Google Scholar

[20]

D. Ornstein, A non-inequality for differential operators in the $L^{1}$ norm, Arch. Rational Mech. Anal., 11 (1962), 40-49.  doi: 10.1007/BF00253928.  Google Scholar

[21]

A. Schikorra, Nonlinear commutators for the fractional $p-$Laplacian and applications, Math. Ann., 366 (2016), 695-720.  doi: 10.1007/s00208-015-1347-0.  Google Scholar

[22]

J. Scott and T. Mengesha, A potential space estimate for solutions of systems of nonlocal equations in peridynamics, SIAM Journal of Mathematical Analysis, 51 (2019), 86-109.  doi: 10.1137/18M1189294.  Google Scholar

[23]

S. A. Silling, Reformulation of elasticity theory for discontinuities and long-range forces, J. Mech. Phys. Solids, 48 (2000), 175-209.  doi: 10.1016/S0022-5096(99)00029-0.  Google Scholar

[24]

S. A. Silling, Linearized theory of peridynamic states, J. Elast., 99 (2010), 85-111.  doi: 10.1007/s10659-009-9234-0.  Google Scholar

[25]

S. A. SillingM. EptonO. WecknerJ. Xu and E. Askari, Peridynamic states and constitutive modeling, J. Elast., 88 (2007), 151-184.  doi: 10.1007/s10659-007-9125-1.  Google Scholar

[26] E. N. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, 1970.   Google Scholar
[27]

M. H. Taibleson, On the theory of Lipschitz spaces of distributions on Euclidean n-space: I. principal properties, Journal of Mathematics and Mechanics, 13 (1964), 407-479.   Google Scholar

[28]

H. B. Veiga and F. Crispo, On the global regularity for nonlinear systems of the $p$-Laplacian type, Discrete & Continuous Dynamical Systems, 6 (2013), 1173-1191.  doi: 10.3934/dcdss.2013.6.1173.  Google Scholar

[1]

Pablo Raúl Stinga, Chao Zhang. Harnack's inequality for fractional nonlocal equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 3153-3170. doi: 10.3934/dcds.2013.33.3153

[2]

Younghun Hong, Yannick Sire. On Fractional Schrödinger Equations in sobolev spaces. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2265-2282. doi: 10.3934/cpaa.2015.14.2265

[3]

Haim Brezis, Petru Mironescu. Composition in fractional Sobolev spaces. Discrete & Continuous Dynamical Systems - A, 2001, 7 (2) : 241-246. doi: 10.3934/dcds.2001.7.241

[4]

Anat Amir. Sharpness of Zapolsky's inequality for quasi-states and Poisson brackets. Electronic Research Announcements, 2011, 18: 61-68. doi: 10.3934/era.2011.18.61

[5]

Hasib Khan, Cemil Tunc, Aziz Khan. Green function's properties and existence theorems for nonlinear singular-delay-fractional differential equations. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020139

[6]

M. R. Arias, R. Benítez. Properties of solutions for nonlinear Volterra integral equations. Conference Publications, 2003, 2003 (Special) : 42-47. doi: 10.3934/proc.2003.2003.42

[7]

Diogo A. Gomes, Gabriele Terrone. Bernstein estimates: weakly coupled systems and integral equations. Communications on Pure & Applied Analysis, 2012, 11 (3) : 861-883. doi: 10.3934/cpaa.2012.11.861

[8]

Jinrong Wang, Michal Fečkan, Yong Zhou. Approximate controllability of Sobolev type fractional evolution systems with nonlocal conditions. Evolution Equations & Control Theory, 2017, 6 (3) : 471-486. doi: 10.3934/eect.2017024

[9]

Anouar Bahrouni, VicenŢiu D. RĂdulescu. On a new fractional Sobolev space and applications to nonlocal variational problems with variable exponent. Discrete & Continuous Dynamical Systems - S, 2018, 11 (3) : 379-389. doi: 10.3934/dcdss.2018021

[10]

Vincenzo Ambrosio, Giovanni Molica Bisci. Periodic solutions for nonlocal fractional equations. Communications on Pure & Applied Analysis, 2017, 16 (1) : 331-344. doi: 10.3934/cpaa.2017016

[11]

Huilian Jia, Lihe Wang, Fengping Yao, Shulin Zhou. Regularity theory in Orlicz spaces for the poisson and heat equations. Communications on Pure & Applied Analysis, 2008, 7 (2) : 407-416. doi: 10.3934/cpaa.2008.7.407

[12]

Andrea Cianchi, Adele Ferone. Improving sharp Sobolev type inequalities by optimal remainder gradient norms. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1363-1386. doi: 10.3934/cpaa.2012.11.1363

[13]

Yingshu Lü, Zhongxue Lü. Some properties of solutions to the weighted Hardy-Littlewood-Sobolev type integral system. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3791-3810. doi: 10.3934/dcds.2016.36.3791

[14]

Saïd Abbas, Mouffak Benchohra, John R. Graef. Coupled systems of Hilfer fractional differential inclusions in banach spaces. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2479-2493. doi: 10.3934/cpaa.2018118

[15]

Wenxiong Chen, Chao Jin, Congming Li, Jisun Lim. Weighted Hardy-Littlewood-Sobolev inequalities and systems of integral equations. Conference Publications, 2005, 2005 (Special) : 164-172. doi: 10.3934/proc.2005.2005.164

[16]

Philippe Ciarlet. Korn's inequalities: The linear vs. the nonlinear case. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 473-483. doi: 10.3934/dcdss.2012.5.473

[17]

Zhigang Wu, Hao Xu. Symmetry properties in systems of fractional Laplacian equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1559-1571. doi: 10.3934/dcds.2019068

[18]

Jinggang Tan, Jingang Xiong. A Harnack inequality for fractional Laplace equations with lower order terms. Discrete & Continuous Dynamical Systems - A, 2011, 31 (3) : 975-983. doi: 10.3934/dcds.2011.31.975

[19]

Yuta Kugo, Motohiro Sobajima, Toshiyuki Suzuki, Tomomi Yokota, Kentarou Yoshii. Solvability of a class of complex Ginzburg-Landau equations in periodic Sobolev spaces. Conference Publications, 2015, 2015 (special) : 754-763. doi: 10.3934/proc.2015.0754

[20]

Ming Wang. Global attractor for weakly damped gKdV equations in higher sobolev spaces. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3799-3825. doi: 10.3934/dcds.2015.35.3799

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (62)
  • HTML views (91)
  • Cited by (0)

Other articles
by authors

[Back to Top]