-
Previous Article
Hardy-Sobolev type inequality and supercritical extremal problem
- DCDS Home
- This Issue
-
Next Article
Existence of time-periodic strong solutions to a fluid–structure system
A fractional Korn-type inequality
The University of Tennessee, Knoxville, TN 37996, USA |
We show that a class of spaces of vector fields whose semi-norms involve the magnitude of "directional" difference quotients is in fact equivalent to the class of fractional Sobolev spaces. The equivalence can be considered a Korn-type characterization of fractional Sobolev spaces. We use the result to understand better the energy space associated to a strongly coupled system of nonlocal equations related to a nonlocal continuum model via peridynamics. Moreover, the equivalence permits us to apply classical space embeddings in proving that weak solutions to the nonlocal system enjoy both improved differentiability and improved integrability.
References:
[1] |
P. Auscher, S. Bortz, M. Egert and O. Saari, Non-local self-improving properties: A functional analytic approach, Tunisian Journal of Mathematics, 1 (2019), 151-183. Google Scholar |
[2] |
R. F. Bass and H. Ren,
Meyers inequality and strong stability for stable-like operators, J. of Func. Anal, 265 (2013), 28-48.
doi: 10.1016/j.jfa.2013.03.008. |
[3] |
S. Blatt, P. Reiter and A. Schikorra,
Harmonic analysis meets critical knots (stationary points of the moebius energy are smooth, Trans. Amer. Math. Soc., 368 (2016), 6391-6438.
doi: 10.1090/tran/6603. |
[4] |
J. Bourgain, H. Brezis and P. Mironescu, Another look at Sobolev spaces, in: Optimal Control and Partial Differential, Equations. A Volume in Honour of A. Bensoussans 60th Birthday, IOS Press, 2001, 439–455. |
[5] |
K. de Leeuw and H. Mirkil,
A priori estimates for differential operators in $L^{\infty}$ norm, Illinois J. Math., 8 (1964), 112-124.
|
[6] |
F. Demengel and G. Demengel, Function Spaces for the Theory of Elliptic Partial Differential Equations, Springer, 2012.
doi: 10.1007/978-1-4471-2807-6. |
[7] |
Q. Du and K. Zhou,
Mathematical analysis for the peridynamic non-local continuum theory, ESIAM: Math. Modelling Numer. Anal., 45 (2011), 217-234.
doi: 10.1051/m2an/2010040. |
[8] |
T. Kuusi, G. Mingione and Y. Sire,
Nonlocal self-improving properties, Analysis and PDE, 8 (2015), 57-114.
doi: 10.2140/apde.2015.8.57. |
[9] |
R. Lipton,
Dynamic brittle fracture as a small horizon limit of peridynamics, Journal of Elasticity, 117 (2014), 21-50.
doi: 10.1007/s10659-013-9463-0. |
[10] |
R. Lipton,
Cohesive dynamics and fracture, Journal of Elasticity, 124 (2016), 143-191.
doi: 10.1007/s10659-015-9564-z. |
[11] |
J. M. Martell, D. Mitrea, I. Mitrea and M. Mitrea,
The higher order regularity Dirichlet problem for elliptic systems in the upper-half space, Harmonic Analysis and Partial Differential Equations. Proceedings of the 9th International Conference on Harmonic Analysis and Partial Differential Equations, El Escorial, June 11-15, 2012, Contemporary Mathematics, 612 (2014), 123-141.
doi: 10.1090/conm/612/12228. |
[12] |
J. M. Martell, D. Mitrea, I. Mitrea and M. Mitrea,
The Dirichlet problem for elliptic systems with data in Köthe function spaces, Revista Matemática Iberoamericana, 268 (2016), 913-970.
doi: 10.4171/RMI/903. |
[13] |
T. Mengesha, Nonlocal Korn-type characterization of Sobolev vector fields, Commun. Contemp. Math., 14 (2012), 1250028, 28pp.
doi: 10.1142/S0219199712500289. |
[14] |
T. Mengesha, Fractional Korn and Hardy-type inequalities for vector fields in half space, To appear in Communications in Contemporary Mathematics, 2018, URL https://arXiv.org/abs/1805.06434.
doi: 10.1142/S0219199718500554. |
[15] |
T. Mengesha and Q. Du,
Nonlocal constrained value problems for a linear peridynamic Navier equation, J. Elast, 116 (2014), 27-51.
doi: 10.1007/s10659-013-9456-z. |
[16] |
T. Mengesha and Q. Du,
On the variational limit of a class of nonlocal functionals related to peridynamics, Nonlinearity, 28 (2015), 3999-4035.
doi: 10.1088/0951-7715/28/11/3999. |
[17] |
D. Mitrea, Distributions, Partial Differential Equations, and Harmonic Analysis, Springer Universitext, 2013.
doi: 10.1007/978-1-4614-8208-6. |
[18] |
E. D. Nezza, G. Palatucci and E. Valdinoci,
Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.
doi: 10.1016/j.bulsci.2011.12.004. |
[19] |
J. A. Nitsche,
On Korn's second inequality, ESAIM: M2AN, 15 (1981), 237-248.
doi: 10.1051/m2an/1981150302371. |
[20] |
D. Ornstein,
A non-inequality for differential operators in the $L^{1}$ norm, Arch. Rational Mech. Anal., 11 (1962), 40-49.
doi: 10.1007/BF00253928. |
[21] |
A. Schikorra,
Nonlinear commutators for the fractional $p-$Laplacian and applications, Math. Ann., 366 (2016), 695-720.
doi: 10.1007/s00208-015-1347-0. |
[22] |
J. Scott and T. Mengesha,
A potential space estimate for solutions of systems of nonlocal equations in peridynamics, SIAM Journal of Mathematical Analysis, 51 (2019), 86-109.
doi: 10.1137/18M1189294. |
[23] |
S. A. Silling,
Reformulation of elasticity theory for discontinuities and long-range forces, J. Mech. Phys. Solids, 48 (2000), 175-209.
doi: 10.1016/S0022-5096(99)00029-0. |
[24] |
S. A. Silling,
Linearized theory of peridynamic states, J. Elast., 99 (2010), 85-111.
doi: 10.1007/s10659-009-9234-0. |
[25] |
S. A. Silling, M. Epton, O. Weckner, J. Xu and E. Askari,
Peridynamic states and constitutive modeling, J. Elast., 88 (2007), 151-184.
doi: 10.1007/s10659-007-9125-1. |
[26] |
E. N. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, 1970.
![]() |
[27] |
M. H. Taibleson,
On the theory of Lipschitz spaces of distributions on Euclidean n-space: I. principal properties, Journal of Mathematics and Mechanics, 13 (1964), 407-479.
|
[28] |
H. B. Veiga and F. Crispo,
On the global regularity for nonlinear systems of the $p$-Laplacian type, Discrete & Continuous Dynamical Systems, 6 (2013), 1173-1191.
doi: 10.3934/dcdss.2013.6.1173. |
show all references
References:
[1] |
P. Auscher, S. Bortz, M. Egert and O. Saari, Non-local self-improving properties: A functional analytic approach, Tunisian Journal of Mathematics, 1 (2019), 151-183. Google Scholar |
[2] |
R. F. Bass and H. Ren,
Meyers inequality and strong stability for stable-like operators, J. of Func. Anal, 265 (2013), 28-48.
doi: 10.1016/j.jfa.2013.03.008. |
[3] |
S. Blatt, P. Reiter and A. Schikorra,
Harmonic analysis meets critical knots (stationary points of the moebius energy are smooth, Trans. Amer. Math. Soc., 368 (2016), 6391-6438.
doi: 10.1090/tran/6603. |
[4] |
J. Bourgain, H. Brezis and P. Mironescu, Another look at Sobolev spaces, in: Optimal Control and Partial Differential, Equations. A Volume in Honour of A. Bensoussans 60th Birthday, IOS Press, 2001, 439–455. |
[5] |
K. de Leeuw and H. Mirkil,
A priori estimates for differential operators in $L^{\infty}$ norm, Illinois J. Math., 8 (1964), 112-124.
|
[6] |
F. Demengel and G. Demengel, Function Spaces for the Theory of Elliptic Partial Differential Equations, Springer, 2012.
doi: 10.1007/978-1-4471-2807-6. |
[7] |
Q. Du and K. Zhou,
Mathematical analysis for the peridynamic non-local continuum theory, ESIAM: Math. Modelling Numer. Anal., 45 (2011), 217-234.
doi: 10.1051/m2an/2010040. |
[8] |
T. Kuusi, G. Mingione and Y. Sire,
Nonlocal self-improving properties, Analysis and PDE, 8 (2015), 57-114.
doi: 10.2140/apde.2015.8.57. |
[9] |
R. Lipton,
Dynamic brittle fracture as a small horizon limit of peridynamics, Journal of Elasticity, 117 (2014), 21-50.
doi: 10.1007/s10659-013-9463-0. |
[10] |
R. Lipton,
Cohesive dynamics and fracture, Journal of Elasticity, 124 (2016), 143-191.
doi: 10.1007/s10659-015-9564-z. |
[11] |
J. M. Martell, D. Mitrea, I. Mitrea and M. Mitrea,
The higher order regularity Dirichlet problem for elliptic systems in the upper-half space, Harmonic Analysis and Partial Differential Equations. Proceedings of the 9th International Conference on Harmonic Analysis and Partial Differential Equations, El Escorial, June 11-15, 2012, Contemporary Mathematics, 612 (2014), 123-141.
doi: 10.1090/conm/612/12228. |
[12] |
J. M. Martell, D. Mitrea, I. Mitrea and M. Mitrea,
The Dirichlet problem for elliptic systems with data in Köthe function spaces, Revista Matemática Iberoamericana, 268 (2016), 913-970.
doi: 10.4171/RMI/903. |
[13] |
T. Mengesha, Nonlocal Korn-type characterization of Sobolev vector fields, Commun. Contemp. Math., 14 (2012), 1250028, 28pp.
doi: 10.1142/S0219199712500289. |
[14] |
T. Mengesha, Fractional Korn and Hardy-type inequalities for vector fields in half space, To appear in Communications in Contemporary Mathematics, 2018, URL https://arXiv.org/abs/1805.06434.
doi: 10.1142/S0219199718500554. |
[15] |
T. Mengesha and Q. Du,
Nonlocal constrained value problems for a linear peridynamic Navier equation, J. Elast, 116 (2014), 27-51.
doi: 10.1007/s10659-013-9456-z. |
[16] |
T. Mengesha and Q. Du,
On the variational limit of a class of nonlocal functionals related to peridynamics, Nonlinearity, 28 (2015), 3999-4035.
doi: 10.1088/0951-7715/28/11/3999. |
[17] |
D. Mitrea, Distributions, Partial Differential Equations, and Harmonic Analysis, Springer Universitext, 2013.
doi: 10.1007/978-1-4614-8208-6. |
[18] |
E. D. Nezza, G. Palatucci and E. Valdinoci,
Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.
doi: 10.1016/j.bulsci.2011.12.004. |
[19] |
J. A. Nitsche,
On Korn's second inequality, ESAIM: M2AN, 15 (1981), 237-248.
doi: 10.1051/m2an/1981150302371. |
[20] |
D. Ornstein,
A non-inequality for differential operators in the $L^{1}$ norm, Arch. Rational Mech. Anal., 11 (1962), 40-49.
doi: 10.1007/BF00253928. |
[21] |
A. Schikorra,
Nonlinear commutators for the fractional $p-$Laplacian and applications, Math. Ann., 366 (2016), 695-720.
doi: 10.1007/s00208-015-1347-0. |
[22] |
J. Scott and T. Mengesha,
A potential space estimate for solutions of systems of nonlocal equations in peridynamics, SIAM Journal of Mathematical Analysis, 51 (2019), 86-109.
doi: 10.1137/18M1189294. |
[23] |
S. A. Silling,
Reformulation of elasticity theory for discontinuities and long-range forces, J. Mech. Phys. Solids, 48 (2000), 175-209.
doi: 10.1016/S0022-5096(99)00029-0. |
[24] |
S. A. Silling,
Linearized theory of peridynamic states, J. Elast., 99 (2010), 85-111.
doi: 10.1007/s10659-009-9234-0. |
[25] |
S. A. Silling, M. Epton, O. Weckner, J. Xu and E. Askari,
Peridynamic states and constitutive modeling, J. Elast., 88 (2007), 151-184.
doi: 10.1007/s10659-007-9125-1. |
[26] |
E. N. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, 1970.
![]() |
[27] |
M. H. Taibleson,
On the theory of Lipschitz spaces of distributions on Euclidean n-space: I. principal properties, Journal of Mathematics and Mechanics, 13 (1964), 407-479.
|
[28] |
H. B. Veiga and F. Crispo,
On the global regularity for nonlinear systems of the $p$-Laplacian type, Discrete & Continuous Dynamical Systems, 6 (2013), 1173-1191.
doi: 10.3934/dcdss.2013.6.1173. |
[1] |
Nguyen Anh Tuan, Donal O'Regan, Dumitru Baleanu, Nguyen H. Tuan. On time fractional pseudo-parabolic equations with nonlocal integral conditions. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020109 |
[2] |
Alessandro Carbotti, Giovanni E. Comi. A note on Riemann-Liouville fractional Sobolev spaces. Communications on Pure & Applied Analysis, 2021, 20 (1) : 17-54. doi: 10.3934/cpaa.2020255 |
[3] |
Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020432 |
[4] |
Mingchao Zhao, You-Wei Wen, Michael Ng, Hongwei Li. A nonlocal low rank model for poisson noise removal. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021003 |
[5] |
Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250 |
[6] |
Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020049 |
[7] |
Anna Anop, Robert Denk, Aleksandr Murach. Elliptic problems with rough boundary data in generalized Sobolev spaces. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020286 |
[8] |
Haruki Umakoshi. A semilinear heat equation with initial data in negative Sobolev spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 745-767. doi: 10.3934/dcdss.2020365 |
[9] |
Meng Ding, Ting-Zhu Huang, Xi-Le Zhao, Michael K. Ng, Tian-Hui Ma. Tensor train rank minimization with nonlocal self-similarity for tensor completion. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021001 |
[10] |
Dmitry Dolgopyat. The work of Sébastien Gouëzel on limit theorems and on weighted Banach spaces. Journal of Modern Dynamics, 2020, 16: 351-371. doi: 10.3934/jmd.2020014 |
[11] |
Giulia Luise, Giuseppe Savaré. Contraction and regularizing properties of heat flows in metric measure spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 273-297. doi: 10.3934/dcdss.2020327 |
[12] |
Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168 |
[13] |
Bopeng Rao, Zhuangyi Liu. A spectral approach to the indirect boundary control of a system of weakly coupled wave equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 399-414. doi: 10.3934/dcds.2009.23.399 |
[14] |
Haoyu Li, Zhi-Qiang Wang. Multiple positive solutions for coupled Schrödinger equations with perturbations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020294 |
[15] |
Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020379 |
[16] |
Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020469 |
[17] |
Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116 |
[18] |
Zaizheng Li, Qidi Zhang. Sub-solutions and a point-wise Hopf's lemma for fractional $ p $-Laplacian. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020293 |
[19] |
Nguyen Thi Kim Son, Nguyen Phuong Dong, Le Hoang Son, Alireza Khastan, Hoang Viet Long. Complete controllability for a class of fractional evolution equations with uncertainty. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020104 |
[20] |
Zaihui Gan, Fanghua Lin, Jiajun Tong. On the viscous Camassa-Holm equations with fractional diffusion. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3427-3450. doi: 10.3934/dcds.2020029 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]