June  2019, 39(6): 3345-3364. doi: 10.3934/dcds.2019138

Hardy-Sobolev type inequality and supercritical extremal problem

1. 

Department of Mathematics, Federal University of Piauí, 64049-550 Teresina, PI, Brazil

2. 

Department of Mathematics, University of Brasília, 70910-900, Brasília, DF, Brazil

3. 

Departamento de Matematica, Universidad de Santiago de Chile, Casilla 307, Correo 2, Santiago, Chile

* Corresponding author: João Marcos do Ó

Received  July 2018 Revised  December 2018 Published  February 2019

Fund Project: The third author was supported by FONDECYT grants 1181125, 1161635 and 1171691

This paper deals with Hardy-Sobolev type inequalities involving variable exponents. Our approach also enables us to prove existence results for a wide class of quasilinear elliptic equations with supercritical power-type nonlinearity with variable exponent.

Citation: José Francisco de Oliveira, João Marcos do Ó, Pedro Ubilla. Hardy-Sobolev type inequality and supercritical extremal problem. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3345-3364. doi: 10.3934/dcds.2019138
References:
[1]

A. BalinskyW. D. Evans and R. T. Lewis, Hardy's inequality and curvature, J. Funct. Anal., 262 (2012), 648-666.  doi: 10.1016/j.jfa.2011.10.001.  Google Scholar

[2]

E. BerchioD. Ganguly and G. Grillo, Sharp Poincaré-Hardy and Poincaré-Rellich inequalities on the hyperbolic space, J. Funct. Anal., 272 (2017), 1661-1703.  doi: 10.1016/j.jfa.2016.11.018.  Google Scholar

[3]

H. Brezis and E. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 88 (1983), 486-490.  doi: 10.1090/S0002-9939-1983-0699419-3.  Google Scholar

[4]

H. BrezisM. Marcus and I. Shafrir, Extremal functions for Hardy's inequality with weight, J. Funct. Anal., 171 (2000), 177-191.  doi: 10.1006/jfan.1999.3504.  Google Scholar

[5]

H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., 36 (1983), 437-477.  doi: 10.1002/cpa.3160360405.  Google Scholar

[6]

P. ClémentD. G. de Figueiredo and E. Mitidieri, Quasilinear elliptic equations with critical exponents, Topol. Methods Nonlinear Anal., 7 (1996), 133-170.  doi: 10.12775/TMNA.1996.006.  Google Scholar

[7]

A. Cotsiolis and N. Labropoulos, Sharp Hardy inequalities on the solid torus, J. Math. Anal. Appl., 448 (2017), 841-863.  doi: 10.1016/j.jmaa.2016.11.042.  Google Scholar

[8]

D. G. de FigueiredoJ. V. Gonçalves and O. H. Miyagaki, On a class of quasilinear elliptic problems involving critical exponents, Commun. Contemp. Math., 2 (2000), 47-59.  doi: 10.1142/S0219199700000049.  Google Scholar

[9]

J. F. de Oliveira and J. M. do Ó, Trudinger-Moser type inequalities for weighted Sobolev spaces involving fractional dimensions, Proc. Amer. Math. Soc., 142 (2014), 2813-2828.  doi: 10.1090/S0002-9939-2014-12019-3.  Google Scholar

[10]

J. F. de Oliveira, On a class of quasilinear elliptic problems with critical exponential growth on the whole space, Topol. Methods Nonlinear Anal., 49 (2017), 529-550.  doi: 10.12775/TMNA.2016.086.  Google Scholar

[11]

L. Diening, P. Harjulehto, P. Hästö and M. Ruzicka, Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Mathematics 2017, Springer, Heidelberg, 2011. doi: 10.1007/978-3-642-18363-8.  Google Scholar

[12]

J. M. do Ó and J. F. de Oliveira, Concentration-compactness and extremal problems for a weighted Trudinger-Moser inequality, Commun. Contemp. Math., 19 (2017), 1650003, 26pp. doi: 10.1142/S0219199716500036.  Google Scholar

[13]

J. M. do Ó, B. Ruf and P. Ubilla, On supercritical Sobolev type inequalities and related elliptic equations, Calc. Var. Partial Differential Equations, 55 (2016), Art. 83, 18 pp. doi: 10.1007/s00526-016-1015-6.  Google Scholar

[14]

I. Ekeland, On the variational principle, J. Math. Anal. Appl., 47 (1974), 324-353.  doi: 10.1016/0022-247X(74)90025-0.  Google Scholar

[15]

G. H. Hardy, Note on a theorem of Hilbert, Math. Z., 6 (1920), 314-317.  doi: 10.1007/BF01199965.  Google Scholar

[16] G. H. HardyJ. E. Littlewood and G. Pólya, Inequalities, University Press, ${2^{\mathit{nd}}}$ edition, Cambridge, at the University Press, 1952.   Google Scholar
[17]

J. Jacobsen and K. Schmitt, Radial solutions of quasilinear elliptic differential equations, Handbook of Differential Equations, Elsevier/North-Holland, Amsterdam, (2004), 359-435.  Google Scholar

[18]

J. Jacobsen and K. Schmitt, The Liouville-Bratu-Gelfand problem for radial operators, J. Differential Equations, 184 (2002), 283-298.  doi: 10.1006/jdeq.2001.4151.  Google Scholar

[19]

A. Kufner and B. Opic, Hardy-type Inequalities, Pitman Research Notes in Mathematics Series, vol. 219, Longman Scientific and Technical, Harlow, 1990.  Google Scholar

[20]

E. Mitidieri, A simple approach to Hardy inequalities, Mat. Zametki, 67 (2000), 563-572.  doi: 10.1007/BF02676404.  Google Scholar

[21]

D. S. Mitrinovic, J. E. Pecaric and A. M. Fink, Inequalities Involving Functions and Their Integrals and Derivatives, Mathematics and its Applications (East European Series), 53, Kluwer Academic Publishers Group, Dordrecht, 1991. doi: 10.1007/978-94-011-3562-7.  Google Scholar

[22]

D. S. Mitrinovic, J. E. Pecaric and A. M. Fink, Classical and New Inequalities in Analysis, Mathematics and its Applications (East European Series), 61, Kluwer Academic Publishers Group, Dordrecht, 1993. doi: 10.1007/978-94-017-1043-5.  Google Scholar

[23]

B. G. Pachpatte, On some generalizations of Hardy's integral inequality, J. Math. Anal. Appl., 234 (1999), 15-30.  doi: 10.1006/jmaa.1999.6294.  Google Scholar

[24]

W. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys., 55 (1977), 149-162.  doi: 10.1007/BF01626517.  Google Scholar

[25]

G. Wang and D. Ye, A Hardy-Moser-Trudinger inequality, Advances in Mathematics, 230 (2012), 294-320.  doi: 10.1016/j.aim.2011.12.001.  Google Scholar

show all references

References:
[1]

A. BalinskyW. D. Evans and R. T. Lewis, Hardy's inequality and curvature, J. Funct. Anal., 262 (2012), 648-666.  doi: 10.1016/j.jfa.2011.10.001.  Google Scholar

[2]

E. BerchioD. Ganguly and G. Grillo, Sharp Poincaré-Hardy and Poincaré-Rellich inequalities on the hyperbolic space, J. Funct. Anal., 272 (2017), 1661-1703.  doi: 10.1016/j.jfa.2016.11.018.  Google Scholar

[3]

H. Brezis and E. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 88 (1983), 486-490.  doi: 10.1090/S0002-9939-1983-0699419-3.  Google Scholar

[4]

H. BrezisM. Marcus and I. Shafrir, Extremal functions for Hardy's inequality with weight, J. Funct. Anal., 171 (2000), 177-191.  doi: 10.1006/jfan.1999.3504.  Google Scholar

[5]

H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., 36 (1983), 437-477.  doi: 10.1002/cpa.3160360405.  Google Scholar

[6]

P. ClémentD. G. de Figueiredo and E. Mitidieri, Quasilinear elliptic equations with critical exponents, Topol. Methods Nonlinear Anal., 7 (1996), 133-170.  doi: 10.12775/TMNA.1996.006.  Google Scholar

[7]

A. Cotsiolis and N. Labropoulos, Sharp Hardy inequalities on the solid torus, J. Math. Anal. Appl., 448 (2017), 841-863.  doi: 10.1016/j.jmaa.2016.11.042.  Google Scholar

[8]

D. G. de FigueiredoJ. V. Gonçalves and O. H. Miyagaki, On a class of quasilinear elliptic problems involving critical exponents, Commun. Contemp. Math., 2 (2000), 47-59.  doi: 10.1142/S0219199700000049.  Google Scholar

[9]

J. F. de Oliveira and J. M. do Ó, Trudinger-Moser type inequalities for weighted Sobolev spaces involving fractional dimensions, Proc. Amer. Math. Soc., 142 (2014), 2813-2828.  doi: 10.1090/S0002-9939-2014-12019-3.  Google Scholar

[10]

J. F. de Oliveira, On a class of quasilinear elliptic problems with critical exponential growth on the whole space, Topol. Methods Nonlinear Anal., 49 (2017), 529-550.  doi: 10.12775/TMNA.2016.086.  Google Scholar

[11]

L. Diening, P. Harjulehto, P. Hästö and M. Ruzicka, Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Mathematics 2017, Springer, Heidelberg, 2011. doi: 10.1007/978-3-642-18363-8.  Google Scholar

[12]

J. M. do Ó and J. F. de Oliveira, Concentration-compactness and extremal problems for a weighted Trudinger-Moser inequality, Commun. Contemp. Math., 19 (2017), 1650003, 26pp. doi: 10.1142/S0219199716500036.  Google Scholar

[13]

J. M. do Ó, B. Ruf and P. Ubilla, On supercritical Sobolev type inequalities and related elliptic equations, Calc. Var. Partial Differential Equations, 55 (2016), Art. 83, 18 pp. doi: 10.1007/s00526-016-1015-6.  Google Scholar

[14]

I. Ekeland, On the variational principle, J. Math. Anal. Appl., 47 (1974), 324-353.  doi: 10.1016/0022-247X(74)90025-0.  Google Scholar

[15]

G. H. Hardy, Note on a theorem of Hilbert, Math. Z., 6 (1920), 314-317.  doi: 10.1007/BF01199965.  Google Scholar

[16] G. H. HardyJ. E. Littlewood and G. Pólya, Inequalities, University Press, ${2^{\mathit{nd}}}$ edition, Cambridge, at the University Press, 1952.   Google Scholar
[17]

J. Jacobsen and K. Schmitt, Radial solutions of quasilinear elliptic differential equations, Handbook of Differential Equations, Elsevier/North-Holland, Amsterdam, (2004), 359-435.  Google Scholar

[18]

J. Jacobsen and K. Schmitt, The Liouville-Bratu-Gelfand problem for radial operators, J. Differential Equations, 184 (2002), 283-298.  doi: 10.1006/jdeq.2001.4151.  Google Scholar

[19]

A. Kufner and B. Opic, Hardy-type Inequalities, Pitman Research Notes in Mathematics Series, vol. 219, Longman Scientific and Technical, Harlow, 1990.  Google Scholar

[20]

E. Mitidieri, A simple approach to Hardy inequalities, Mat. Zametki, 67 (2000), 563-572.  doi: 10.1007/BF02676404.  Google Scholar

[21]

D. S. Mitrinovic, J. E. Pecaric and A. M. Fink, Inequalities Involving Functions and Their Integrals and Derivatives, Mathematics and its Applications (East European Series), 53, Kluwer Academic Publishers Group, Dordrecht, 1991. doi: 10.1007/978-94-011-3562-7.  Google Scholar

[22]

D. S. Mitrinovic, J. E. Pecaric and A. M. Fink, Classical and New Inequalities in Analysis, Mathematics and its Applications (East European Series), 61, Kluwer Academic Publishers Group, Dordrecht, 1993. doi: 10.1007/978-94-017-1043-5.  Google Scholar

[23]

B. G. Pachpatte, On some generalizations of Hardy's integral inequality, J. Math. Anal. Appl., 234 (1999), 15-30.  doi: 10.1006/jmaa.1999.6294.  Google Scholar

[24]

W. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys., 55 (1977), 149-162.  doi: 10.1007/BF01626517.  Google Scholar

[25]

G. Wang and D. Ye, A Hardy-Moser-Trudinger inequality, Advances in Mathematics, 230 (2012), 294-320.  doi: 10.1016/j.aim.2011.12.001.  Google Scholar

[1]

Jingbo Dou, Ye Li. Classification of extremal functions to logarithmic Hardy-Littlewood-Sobolev inequality on the upper half space. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 3939-3953. doi: 10.3934/dcds.2018171

[2]

Elvise Berchio, Debdip Ganguly. Improved higher order poincaré inequalities on the hyperbolic space via Hardy-type remainder terms. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1871-1892. doi: 10.3934/cpaa.2016020

[3]

Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037

[4]

Yinbin Deng, Qi Gao, Dandan Zhang. Nodal solutions for Laplace equations with critical Sobolev and Hardy exponents on $R^N$. Discrete & Continuous Dynamical Systems - A, 2007, 19 (1) : 211-233. doi: 10.3934/dcds.2007.19.211

[5]

Masato Hashizume, Chun-Hsiung Hsia, Gyeongha Hwang. On the Neumann problem of Hardy-Sobolev critical equations with the multiple singularities. Communications on Pure & Applied Analysis, 2019, 18 (1) : 301-322. doi: 10.3934/cpaa.2019016

[6]

Yanfang Peng, Jing Yang. Sign-changing solutions to elliptic problems with two critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2015, 14 (2) : 439-455. doi: 10.3934/cpaa.2015.14.439

[7]

Yu Zheng, Carlos A. Santos, Zifei Shen, Minbo Yang. Least energy solutions for coupled hartree system with hardy-littlewood-sobolev critical exponents. Communications on Pure & Applied Analysis, 2020, 19 (1) : 329-369. doi: 10.3934/cpaa.2020018

[8]

Hua Jin, Wenbin Liu, Huixing Zhang, Jianjun Zhang. Ground states of nonlinear fractional Choquard equations with Hardy-Littlewood-Sobolev critical growth. Communications on Pure & Applied Analysis, 2020, 19 (1) : 123-144. doi: 10.3934/cpaa.2020008

[9]

Ze Cheng, Congming Li. An extended discrete Hardy-Littlewood-Sobolev inequality. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 1951-1959. doi: 10.3934/dcds.2014.34.1951

[10]

Mousomi Bhakta, Debangana Mukherjee. Semilinear nonlocal elliptic equations with critical and supercritical exponents. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1741-1766. doi: 10.3934/cpaa.2017085

[11]

M. Nakamura, Tohru Ozawa. The Cauchy problem for nonlinear wave equations in the Sobolev space of critical order. Discrete & Continuous Dynamical Systems - A, 1999, 5 (1) : 215-231. doi: 10.3934/dcds.1999.5.215

[12]

Wei Dai, Zhao Liu, Guozhen Lu. Hardy-Sobolev type integral systems with Dirichlet boundary conditions in a half space. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1253-1264. doi: 10.3934/cpaa.2017061

[13]

Ze Cheng, Changfeng Gui, Yeyao Hu. Existence of solutions to the supercritical Hardy-Littlewood-Sobolev system with fractional Laplacians. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1345-1358. doi: 10.3934/dcds.2019057

[14]

F. R. Pereira. Multiple solutions for a class of Ambrosetti-Prodi type problems for systems involving critical Sobolev exponents. Communications on Pure & Applied Analysis, 2008, 7 (2) : 355-372. doi: 10.3934/cpaa.2008.7.355

[15]

Chunhua Wang, Jing Yang. Infinitely many solutions for an elliptic problem with double critical Hardy-Sobolev-Maz'ya terms. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1603-1628. doi: 10.3934/dcds.2016.36.1603

[16]

Ze Cheng, Genggeng Huang, Congming Li. On the Hardy-Littlewood-Sobolev type systems. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2059-2074. doi: 10.3934/cpaa.2016027

[17]

Genggeng Huang, Congming Li, Ximing Yin. Existence of the maximizing pair for the discrete Hardy-Littlewood-Sobolev inequality. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 935-942. doi: 10.3934/dcds.2015.35.935

[18]

Zongming Guo, Juncheng Wei. Liouville type results and regularity of the extremal solutions of biharmonic equation with negative exponents. Discrete & Continuous Dynamical Systems - A, 2014, 34 (6) : 2561-2580. doi: 10.3934/dcds.2014.34.2561

[19]

Liping Wang, Juncheng Wei. Infinite multiplicity for an inhomogeneous supercritical problem in entire space. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1243-1257. doi: 10.3934/cpaa.2013.12.1243

[20]

Xiaomei Sun, Wenyi Chen. Positive solutions for singular elliptic equations with critical Hardy-Sobolev exponent. Communications on Pure & Applied Analysis, 2011, 10 (2) : 527-540. doi: 10.3934/cpaa.2011.10.527

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (73)
  • HTML views (137)
  • Cited by (0)

[Back to Top]