June  2019, 39(6): 3365-3398. doi: 10.3934/dcds.2019139

Multiplicity and concentration of solutions for Choquard equation via Nehari method and pseudo-index theory

School of Mathematical Sciences, Beijing Normal University, Beijing 100875, China

* Corresponding author: Zhongwei Tang

Received  August 2018 Published  February 2019

Fund Project: This work is supported by NSFC (11571040, 11671331)

This paper concerns the following nonlinear Choquard equation:
$ \begin{equation} -\varepsilon^{2}\Delta w+V(x)w = \varepsilon^{-\theta}W(x)(I_\theta*(W|w|^p))|w|^{p-2}w,\quad x\in\mathbb{R}^N, ~~~~~~~~~~~~(*)\end{equation} $
where
$ \varepsilon>0,\ N>2,\ I_\theta $
is the Riesz potential with order
$ \theta\in(0,N),\ p\in\big[2,\frac{N+\theta}{N-2}\big),\ \min V>0 $
and
$ \inf W>0 $
. Under proper assumptions, we explore the existence, concentration, convergence and decay estimate of semiclassical solutions for
$ (\ast) $
. The multiplicity of solutions is established via pseudo-index theory. The existence of sign-changing solutions is achieved by minimizing the energy on Nehari nodal set.
Citation: Min Liu, Zhongwei Tang. Multiplicity and concentration of solutions for Choquard equation via Nehari method and pseudo-index theory. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3365-3398. doi: 10.3934/dcds.2019139
References:
[1]

N. Ackermann, A nonlinear superposition principle and multibump solutions of periodic Schrödinger equations, J. Funct. Anal., 234 (2006), 277-320.  doi: 10.1016/j.jfa.2005.11.010.  Google Scholar

[2]

C. O. AlvesD. CassaniC. Tarsi and M. Yang, Existence and concentration of ground state solutions for a critical nonlocal Schrödinger equation in $\mathbb{R}^2$, J. Differ. Equations, 261 (2016), 1933-1972.  doi: 10.1016/j.jde.2016.04.021.  Google Scholar

[3]

C. O. AlvesF. GaoM. Squassina and M. Yang, Singularly perturbed critical Choquard equations, J. Differ. Equations, 263 (2017), 3943-3988.  doi: 10.1016/j.jde.2017.05.009.  Google Scholar

[4]

M. BahramiA. GroßardtS. Donadi and A. Bassi, The Schrödinger-Newton equation and its foundations, New J. Phys., 16 (2014), 115007, 17pp.  doi: 10.1088/1367-2630/16/11/115007.  Google Scholar

[5]

V. Benci, On critical point theory for indefinite functionals in the presence of symmetries, Trans. Amer. Math. Soc., 274 (1982), 533-572.  doi: 10.1090/S0002-9947-1982-0675067-X.  Google Scholar

[6]

D. BonheureS. Cingolani and J. Van Schaftingen, The logarithmic Choquard equation: Sharp asymptotics and nondegeneracy of the groundstate, J. Funct. Anal., 272 (2017), 5255-5281.  doi: 10.1016/j.jfa.2017.02.026.  Google Scholar

[7]

S. CingolaniM. Clapp and S. Secchi, Multiple solutions to a magnetic nonlinear Choquard equation, Z. Angew. Math. Phys., 63 (2012), 233-248.  doi: 10.1007/s00033-011-0166-8.  Google Scholar

[8]

M. Clapp and D. Salazar, Positive and sign changing solutions to a nonlinear Choquard equation, J. Math. Anal. Appl., 407 (2013), 1-15.  doi: 10.1016/j.jmaa.2013.04.081.  Google Scholar

[9]

Y. Ding and J. Wei, Multiplicity of semiclassical solutions to nonlinear Schrödinger equations, J. Fixed Point Theory Appl., 19 (2017), 987-1010.  doi: 10.1007/s11784-017-0410-8.  Google Scholar

[10]

M. Ghimenti and J. Van Schaftingen, Nodal solutions for the Choquard equation, J. Funct. Anal., 271 (2016), 107-135.  doi: 10.1016/j.jfa.2016.04.019.  Google Scholar

[11]

M. GhimentiV. Moroz and J. Van Schaftingen, Least action nodal solutions for the quadratic Choquard equation, Proc. Amer. Math. Soc., 145 (2017), 737-747.  doi: 10.1090/proc/13247.  Google Scholar

[12]

D. Giulini and A. Großardt, The Schrödinger equation as a nonrelativistic limit of self-gravitating Klein-Gordon and Dirac fields, Class. Quantum Gravity, 25 (2012), 215010.   Google Scholar

[13] G. H. HardyJ. E. Littlewood and G. Pólya, Inequalities, Cambridge University press, 1952.   Google Scholar
[14]

N. S. Landkof, Foundations of Modern Potential Theory-Translated from the Russian by A.P. Doohovskoy, Springer-Verlag Berlin Heidelberg New York, 1972.  Google Scholar

[15]

E. H. Lieb, Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation, Studies in Appl. Math., 57 (1977), 93-105.   Google Scholar

[16]

E. H. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. Math., 118 (1983), 349-374.  doi: 10.2307/2007032.  Google Scholar

[17]

P. L. Lions, The Choquard equation and related questions, Nonlinear Anal., Theory Methods Appl., 4 (1980), 1063-1072.  doi: 10.1016/0362-546X(80)90016-4.  Google Scholar

[18]

L. Ma and L. Zhao, Classification of positive solitary solutions of the nonlinear Choquard equation, Arch. Ration. Mech. Anal., 195 (2010), 455-467.  doi: 10.1007/s00205-008-0208-3.  Google Scholar

[19]

C. Miranda, Un'osservazione su un teorema di Brouwer, Boll. Un. Mat. Ital., 3 (1940), 5-7.   Google Scholar

[20]

V. Moroz and J. Van Schaftingen, Ground states of nonlinear Choquard equations: Existence, qualitative properties and decay asymptotics, J. Funct. Anal., 265 (2013), 153-184.  doi: 10.1016/j.jfa.2013.04.007.  Google Scholar

[21]

V. Moroz and J. Van Schaftingen, Semi-classical states for the Choquard equation, Calc. Var. Partial Differ. Equ., 52 (2015), 199-235.  doi: 10.1007/s00526-014-0709-x.  Google Scholar

[22]

V. Moroz and J. Van Schaftingen, Existence of ground states for a class of nonlinear Choquard equations, Trans. Amer. Math. Soc., 367 (2015), 6557-6579.  doi: 10.1090/S0002-9947-2014-06289-2.  Google Scholar

[23]

V. Moroz and J. Van Schaftingen, A guide to the Choquard equation, J. Fixed Point Theory Appl., 19 (2017), 773-813.  doi: 10.1007/s11784-016-0373-1.  Google Scholar

[24]

S. Pekar, Untersuchung über die Elektronnentheorie der Kristalle, Akademie Verlag, Berlin, 1954. Google Scholar

[25]

D. Ruiz and J. Van Schaftingen, Odd symmetry of least energy nodal solutions for the Choquard equation, J. Differ. Equations, 264 (2018), 1231-1262.  doi: 10.1016/j.jde.2017.09.034.  Google Scholar

[26]

T. Wang, Existence and nonexistence of nontrivial solutions for Choquard type equations, Electron. J. Differ. Equ., 2016 (2016), Paper No. 3, 17 pp.  Google Scholar

[27]

J. Wei and M. Winter, Strongly interacting bumps for the Schrödinger-Newton equations, J. Math. Phys., 50 (2009), 012905, 22pp.  doi: 10.1063/1.3060169.  Google Scholar

[28]

M. Willem, Minimax Theorems, Birckhäuser, Boston, 1996. doi: 10.1007/978-1-4612-4146-1.  Google Scholar

[29]

M. Yang, Semiclassical ground state solutions for a Choquard type equation in $\mathbb{R}^2$ with critical exponential growth, ESAIM, Control Optim. Calc. Var., 24 (2018), 177-209.  doi: 10.1051/cocv/2017007.  Google Scholar

show all references

References:
[1]

N. Ackermann, A nonlinear superposition principle and multibump solutions of periodic Schrödinger equations, J. Funct. Anal., 234 (2006), 277-320.  doi: 10.1016/j.jfa.2005.11.010.  Google Scholar

[2]

C. O. AlvesD. CassaniC. Tarsi and M. Yang, Existence and concentration of ground state solutions for a critical nonlocal Schrödinger equation in $\mathbb{R}^2$, J. Differ. Equations, 261 (2016), 1933-1972.  doi: 10.1016/j.jde.2016.04.021.  Google Scholar

[3]

C. O. AlvesF. GaoM. Squassina and M. Yang, Singularly perturbed critical Choquard equations, J. Differ. Equations, 263 (2017), 3943-3988.  doi: 10.1016/j.jde.2017.05.009.  Google Scholar

[4]

M. BahramiA. GroßardtS. Donadi and A. Bassi, The Schrödinger-Newton equation and its foundations, New J. Phys., 16 (2014), 115007, 17pp.  doi: 10.1088/1367-2630/16/11/115007.  Google Scholar

[5]

V. Benci, On critical point theory for indefinite functionals in the presence of symmetries, Trans. Amer. Math. Soc., 274 (1982), 533-572.  doi: 10.1090/S0002-9947-1982-0675067-X.  Google Scholar

[6]

D. BonheureS. Cingolani and J. Van Schaftingen, The logarithmic Choquard equation: Sharp asymptotics and nondegeneracy of the groundstate, J. Funct. Anal., 272 (2017), 5255-5281.  doi: 10.1016/j.jfa.2017.02.026.  Google Scholar

[7]

S. CingolaniM. Clapp and S. Secchi, Multiple solutions to a magnetic nonlinear Choquard equation, Z. Angew. Math. Phys., 63 (2012), 233-248.  doi: 10.1007/s00033-011-0166-8.  Google Scholar

[8]

M. Clapp and D. Salazar, Positive and sign changing solutions to a nonlinear Choquard equation, J. Math. Anal. Appl., 407 (2013), 1-15.  doi: 10.1016/j.jmaa.2013.04.081.  Google Scholar

[9]

Y. Ding and J. Wei, Multiplicity of semiclassical solutions to nonlinear Schrödinger equations, J. Fixed Point Theory Appl., 19 (2017), 987-1010.  doi: 10.1007/s11784-017-0410-8.  Google Scholar

[10]

M. Ghimenti and J. Van Schaftingen, Nodal solutions for the Choquard equation, J. Funct. Anal., 271 (2016), 107-135.  doi: 10.1016/j.jfa.2016.04.019.  Google Scholar

[11]

M. GhimentiV. Moroz and J. Van Schaftingen, Least action nodal solutions for the quadratic Choquard equation, Proc. Amer. Math. Soc., 145 (2017), 737-747.  doi: 10.1090/proc/13247.  Google Scholar

[12]

D. Giulini and A. Großardt, The Schrödinger equation as a nonrelativistic limit of self-gravitating Klein-Gordon and Dirac fields, Class. Quantum Gravity, 25 (2012), 215010.   Google Scholar

[13] G. H. HardyJ. E. Littlewood and G. Pólya, Inequalities, Cambridge University press, 1952.   Google Scholar
[14]

N. S. Landkof, Foundations of Modern Potential Theory-Translated from the Russian by A.P. Doohovskoy, Springer-Verlag Berlin Heidelberg New York, 1972.  Google Scholar

[15]

E. H. Lieb, Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation, Studies in Appl. Math., 57 (1977), 93-105.   Google Scholar

[16]

E. H. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. Math., 118 (1983), 349-374.  doi: 10.2307/2007032.  Google Scholar

[17]

P. L. Lions, The Choquard equation and related questions, Nonlinear Anal., Theory Methods Appl., 4 (1980), 1063-1072.  doi: 10.1016/0362-546X(80)90016-4.  Google Scholar

[18]

L. Ma and L. Zhao, Classification of positive solitary solutions of the nonlinear Choquard equation, Arch. Ration. Mech. Anal., 195 (2010), 455-467.  doi: 10.1007/s00205-008-0208-3.  Google Scholar

[19]

C. Miranda, Un'osservazione su un teorema di Brouwer, Boll. Un. Mat. Ital., 3 (1940), 5-7.   Google Scholar

[20]

V. Moroz and J. Van Schaftingen, Ground states of nonlinear Choquard equations: Existence, qualitative properties and decay asymptotics, J. Funct. Anal., 265 (2013), 153-184.  doi: 10.1016/j.jfa.2013.04.007.  Google Scholar

[21]

V. Moroz and J. Van Schaftingen, Semi-classical states for the Choquard equation, Calc. Var. Partial Differ. Equ., 52 (2015), 199-235.  doi: 10.1007/s00526-014-0709-x.  Google Scholar

[22]

V. Moroz and J. Van Schaftingen, Existence of ground states for a class of nonlinear Choquard equations, Trans. Amer. Math. Soc., 367 (2015), 6557-6579.  doi: 10.1090/S0002-9947-2014-06289-2.  Google Scholar

[23]

V. Moroz and J. Van Schaftingen, A guide to the Choquard equation, J. Fixed Point Theory Appl., 19 (2017), 773-813.  doi: 10.1007/s11784-016-0373-1.  Google Scholar

[24]

S. Pekar, Untersuchung über die Elektronnentheorie der Kristalle, Akademie Verlag, Berlin, 1954. Google Scholar

[25]

D. Ruiz and J. Van Schaftingen, Odd symmetry of least energy nodal solutions for the Choquard equation, J. Differ. Equations, 264 (2018), 1231-1262.  doi: 10.1016/j.jde.2017.09.034.  Google Scholar

[26]

T. Wang, Existence and nonexistence of nontrivial solutions for Choquard type equations, Electron. J. Differ. Equ., 2016 (2016), Paper No. 3, 17 pp.  Google Scholar

[27]

J. Wei and M. Winter, Strongly interacting bumps for the Schrödinger-Newton equations, J. Math. Phys., 50 (2009), 012905, 22pp.  doi: 10.1063/1.3060169.  Google Scholar

[28]

M. Willem, Minimax Theorems, Birckhäuser, Boston, 1996. doi: 10.1007/978-1-4612-4146-1.  Google Scholar

[29]

M. Yang, Semiclassical ground state solutions for a Choquard type equation in $\mathbb{R}^2$ with critical exponential growth, ESAIM, Control Optim. Calc. Var., 24 (2018), 177-209.  doi: 10.1051/cocv/2017007.  Google Scholar

[1]

Zifei Shen, Fashun Gao, Minbo Yang. On critical Choquard equation with potential well. Discrete & Continuous Dynamical Systems - A, 2018, 38 (7) : 3567-3593. doi: 10.3934/dcds.2018151

[2]

Jian Zhang, Shihui Zhu, Xiaoguang Li. Rate of $L^2$-concentration of the blow-up solution for critical nonlinear Schrödinger equation with potential. Mathematical Control & Related Fields, 2011, 1 (1) : 119-127. doi: 10.3934/mcrf.2011.1.119

[3]

Shun Kodama. A concentration phenomenon of the least energy solution to non-autonomous elliptic problems with a totally degenerate potential. Communications on Pure & Applied Analysis, 2017, 16 (2) : 671-698. doi: 10.3934/cpaa.2017033

[4]

César E. Torres Ledesma. Existence and concentration of solutions for a non-linear fractional Schrödinger equation with steep potential well. Communications on Pure & Applied Analysis, 2016, 15 (2) : 535-547. doi: 10.3934/cpaa.2016.15.535

[5]

Dengfeng Lü. Existence and concentration behavior of ground state solutions for magnetic nonlinear Choquard equations. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1781-1795. doi: 10.3934/cpaa.2016014

[6]

Daomin Cao, Hang Li. High energy solutions of the Choquard equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (6) : 3023-3032. doi: 10.3934/dcds.2018129

[7]

Genni Fragnelli, Dimitri Mugnai, Nikolaos S. Papageorgiou. Positive and nodal solutions for parametric nonlinear Robin problems with indefinite potential. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6133-6166. doi: 10.3934/dcds.2016068

[8]

Zuji Guo. Nodal solutions for nonlinear Schrödinger equations with decaying potential. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1125-1138. doi: 10.3934/cpaa.2016.15.1125

[9]

Gui-Dong Li, Yong-Yong Li, Xiao-Qi Liu, Chun-Lei Tang. A positive solution of asymptotically periodic Choquard equations with locally defined nonlinearities. Communications on Pure & Applied Analysis, 2020, 19 (3) : 1351-1365. doi: 10.3934/cpaa.2020066

[10]

Bartosz Bieganowski, Simone Secchi. The semirelativistic Choquard equation with a local nonlinear term. Discrete & Continuous Dynamical Systems - A, 2019, 39 (7) : 4279-4302. doi: 10.3934/dcds.2019173

[11]

Phuong Le. Liouville theorems for an integral equation of Choquard type. Communications on Pure & Applied Analysis, 2020, 19 (2) : 771-783. doi: 10.3934/cpaa.2020036

[12]

Yi-hsin Cheng, Tsung-Fang Wu. Multiplicity and concentration of positive solutions for semilinear elliptic equations with steep potential. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2457-2473. doi: 10.3934/cpaa.2016044

[13]

Yu Chen, Yanheng Ding, Suhong Li. Existence and concentration for Kirchhoff type equations around topologically critical points of the potential. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1641-1671. doi: 10.3934/cpaa.2017079

[14]

Song Peng, Aliang Xia. Multiplicity and concentration of solutions for nonlinear fractional elliptic equations with steep potential. Communications on Pure & Applied Analysis, 2018, 17 (3) : 1201-1217. doi: 10.3934/cpaa.2018058

[15]

Linfeng Mei, Wei Dong, Changhe Guo. Concentration phenomenon in a nonlocal equation modeling phytoplankton growth. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 587-597. doi: 10.3934/dcdsb.2015.20.587

[16]

Olivier Bonnefon, Jérôme Coville, Guillaume Legendre. Concentration phenomenon in some non-local equation. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 763-781. doi: 10.3934/dcdsb.2017037

[17]

Minbo Yang, Jianjun Zhang, Yimin Zhang. Multi-peak solutions for nonlinear Choquard equation with a general nonlinearity. Communications on Pure & Applied Analysis, 2017, 16 (2) : 493-512. doi: 10.3934/cpaa.2017025

[18]

Gui-Dong Li, Chun-Lei Tang. Existence of positive ground state solutions for Choquard equation with variable exponent growth. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 2035-2050. doi: 10.3934/dcdss.2019131

[19]

Ting Guo, Xianhua Tang, Qi Zhang, Zu Gao. Nontrivial solutions for the choquard equation with indefinite linear part and upper critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (3) : 1563-1579. doi: 10.3934/cpaa.2020078

[20]

Nikolaos S. Papageorgiou, Vicenţiu D. Rǎdulescu, Dušan D. Repovš. Nodal solutions for the Robin p-Laplacian plus an indefinite potential and a general reaction term. Communications on Pure & Applied Analysis, 2018, 17 (1) : 231-241. doi: 10.3934/cpaa.2018014

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (102)
  • HTML views (158)
  • Cited by (0)

Other articles
by authors

[Back to Top]