\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Bifurcation diagrams of positive solutions for one-dimensional Minkowski-curvature problem and its applications

Abstract Full Text(HTML) Figure(6) Related Papers Cited by
  • In this paper, we study the classification and evolution of bifurcation curves of positive solutions for one-dimensional Minkowski-curvature problem

    $\left\{ \begin{array}{*{35}{l}} \begin{align} & -{{\left( {{u}^{\prime }}/\sqrt{1-{{u}^{\prime }}^{2}} \right)}^{\prime }}=\lambda f(u),\ \text{in }\left( -L,L \right), \\ & u(-L)=u(L)=0, \\ \end{align} \\\end{array} \right. $

    where $ \lambda >0 $ is a bifurcation parameter, $ L>0 $ is an evolution parameter, $ f\in C[0, \infty )\cap C^{2}(0, \infty ) $ and there exists $ \beta >0 $ such that $ \left( \beta -z\right) f(z)>0 $ for $ z\neq \beta $. In particular, we find that the bifurcation curve $ S_{L} $ is monotone increasing for all $ L>0 $ when $ f(u)/u $ is of Logistic type, and is either $ \subset $-shaped or S-shaped for large $ L>0 $ when $ f(u)/u $ is of weak Allee effect type. Finally, we can apply these results to obtain the global bifurcation diagrams in some important applications including ecosystem model.

    Mathematics Subject Classification: 34B15, 34B18, 34C23, 74G35.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  ⅰ) monotone increasing. (ⅱ) $ \subset $-shaped. (ⅲ) S-shaped

    Figure 2.  Graphs of bifurcation curve $ S_{L} $ of (1) with varying $ L>0 $. (ⅰ) (C2) and (H2) hold. (ⅱ) either (C4) or (C6) holds

    Figure 3.  Graphs of bifurcation curve $S_{L}$ of (1) with varying $L>0$. (ⅰ) $S_{\mathring{L}}$ is monotone increasing. (ⅱ) $S_{% \mathring{L}}$ is not monotone increasing

    Figure 4.  Graphs of bifurcation curve $ S_{L} $ of (1), (5). $ \phi _{1}, \phi _{2}\in C(\sqrt{27} , \infty ) $ satisfy $ \phi _{1}(K)>\phi _{2}(K) $ and $ \Phi (K, \phi _{1}(K)) = \Phi (K, \phi _{2}(K)) = 0. $

    Figure 5.  Graphs of bifurcation curve SL of (1), (6)

    Figure 6.  Graphs of bifurcation curve SL of (1), (7). (ⅰ) c = 0. (ⅱ) c > 0

  • [1] R. Bartnik and L. Simon, Spacelike hypersurfaces with prescribed boundary values and mean curvature, Comm. Math. Phys., 87 (1982), 131-152.  doi: 10.1007/BF01211061.
    [2] D. Butler, R. Shivaji and A. Tuck, S-shaped bifurcation curves for logistic growth and weak Allee effect growth models with grazing on an interior patch, Proceedings of the Ninth MSU-UAB Conference on Differential Equations and Computational Simulations, 15–25, Electron. J. Differ. Equ. Conf., 20, Texas State Univ., San Marcos, TX, 2013.
    [3] I. CoelhoC. CorsatoF. Obersnel and P. Omari, Positive solutions of the Dirichlet problem for the one-dimensional Minkowski-curvature equation, Adv. Nonlinear Stud., 12 (2012), 621-638.  doi: 10.1515/ans-2012-0310.
    [4] C. Corsato, Mathematical analysis of some differential models involving the Euclidean or the Minkowski mean curvature operator, PhD thesis, University of Trieste, 2015. Available at https://www.openstarts.units.it/bitstream/10077/11127/1/PhD_Thesis _Corsato.pdf.
    [5] R. P. Feynman, R. B. Leighton and M. Sands, The Feynman Lectures on Physics, Vol. 2: Mainly electromagnetism and matter. Addison-Wesley Publishing Co., Inc., Reading, Mass.-London, 1964.
    [6] S.-Y. Huang, Classification and evolution of bifurcation curves for the one-dimensional Minkowski-curvature problem and its applications, J. Differential Equations, 264 (2018), 5977-6011.  doi: 10.1016/j.jde.2018.01.021.
    [7] S.-Y. Huang, Exact multiplicity and bifurcation curves of positive solutions of a one-dimensional Minkowski-curvature problem and its application, Commun. Pure Appl. Anal., 17 (2018), 1271-1294.  doi: 10.3934/cpaa.2018061.
    [8] S.-Y. Huang and S.-H. Wang, An evolutionary property of the bifurcation curves for a positone problem with cubic nonlinearity, Taiwanese J. Math., 20 (2016), 639-661.  doi: 10.11650/tjm.20.2016.6563.
    [9] S.-Y. Huang, Some proofs in a paper "Bifurcation diagrams of one-dimensional Minkowski-curvature problem and its applications", available from http://mx.nthu.edu.tw/~symbol126sy-huang/Proofs2018.
    [10] K.-C. HungS.-Y. Huang and S.-H. Wang, A global bifurcation theorem for a positone multiparameter problem and its application, Discrete Contin. Dyn. Syst., 37 (2017), 5127-5149.  doi: 10.3934/dcds.2017222.
    [11] K.-C. Hung and S.-H. Wang, Global bifurcation and exact multiplicity of positive solutions for a positone problem with cubic nonlinearity and their applications, Trans. Amer. Math. Soc., 365 (2013), 1933-1956.  doi: 10.1090/S0002-9947-2012-05670-4.
    [12] E. LeeS. Sasi and R. Shivaji, S-shaped bifurcation curves in ecosystems, J. Math. Anal. Appl., 381 (2011), 732-741.  doi: 10.1016/j.jmaa.2011.03.048.
    [13] R. Ma and Y. Lu, Multiplicity of positive solutions for second order nonlinear Dirichlet problem with one-dimension Minkowski-curvature operator, Adv. Nonlinear Stud., 15 (2015), 789-803.  doi: 10.1515/ans-2015-0403.
    [14] P. M. McCabeJ. A. Leach and D. J. Needham, The evolution of travelling waves in fractional order autocatalysis with decay. Ⅰ. Permanent from travelling waves, SIAM J. Appl. Math., 59 (1998), 870-899.  doi: 10.1137/S0036139996312594.
    [15] T. Ouyang and J. Shi, Exact multiplicity of positive solutions for a class of semilinear problems, Journal of Differential Equations, 146 (1998), 121-156.  doi: 10.1006/jdeq.1998.3414.
    [16] E. PooleB. Roberson and B. Stephenson, Weak Allee effect, grazing, and S-shaped bifurcation curves, Involve, 5 (2012), 133-158.  doi: 10.2140/involve.2012.5.133.
    [17] J. Shi and R. Shivaji, Persistence in reaction diffusion models with weak Allee effect, J. Math. Biol., 52 (2006), 807-829.  doi: 10.1007/s00285-006-0373-7.
    [18] C.-C. TzengK.-C. Hung and S.-H. Wang, Global bifurcation and exact multiplicity of positive solutions for a positone problem with cubic nonlinearity, J. Differential Equations, 252 (2012), 6250-6274.  doi: 10.1016/j.jde.2012.02.020.
    [19] M.-H. Wang and M. Kot, Speeds of invasion in a model with strong or weak Allee effects, Math. Biosci., 171 (2001), 83-97.  doi: 10.1016/S0025-5564(01)00048-7.
    [20] J. Xin, Front propagation in heterogeneous media, SIAM Rev., 42 (2000), 161-230.  doi: 10.1137/S0036144599364296.
    [21] T.-S. Yeh, S-shaped and broken S-shaped bifurcation curves for a multiparameter diffusive logistic problem with Holling type-Ⅲ functional response, Commun. Pure Appl. Anal., 16 (2017), 645-670.  doi: 10.3934/cpaa.2017032.
    [22] T.-S. Yeh, Bifurcation curves of positive steady-state solutions for a reaction-diffusion problem of lake eutrophication, J. Math. Anal. Appl., 449 (2017), 1708-1724.  doi: 10.1016/j.jmaa.2016.12.063.
  • 加载中

Figures(6)

SHARE

Article Metrics

HTML views(553) PDF downloads(250) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return