• Previous Article
    On the probabilistic well-posedness of the nonlinear Schrödinger equations with non-algebraic nonlinearities
  • DCDS Home
  • This Issue
  • Next Article
    Bifurcation diagrams of positive solutions for one-dimensional Minkowski-curvature problem and its applications
June  2019, 39(6): 3463-3477. doi: 10.3934/dcds.2019143

Isometric embedding with nonnegative Gauss curvature under the graph setting

Department of Mathematics, Rutgers University, New Brunswick, NJ 08901, USA

Received  September 2018 Revised  November 2018 Published  February 2019

We study the regularity of the isometric embedding $ X: $ $ (B(O, r), g) $ $ \rightarrow $ $ (\mathbb{R}^3, g_{can}) $ of a 2-ball with nonnegatively curved $ C^4 $ metric into $ \mathbb{R}^3 $. Under the assumption that $ X $ can be expressed in the graph form, we show $ X \in C^{2,1} $ near $ P $, which is optimal by Iaia's example.

Citation: Xumin Jiang. Isometric embedding with nonnegative Gauss curvature under the graph setting. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3463-3477. doi: 10.3934/dcds.2019143
References:
[1]

P. Daskalopoulos and O. Savin, On Monge-Ampère Equations with Homogeneous Right-Hand Sides, Comm. Pure Appl. Math, 62 (2009), 639-676. doi: 10.1002/cpa.20263. Google Scholar

[2]

P. Guan, Regularity of a class of quasilinear degenerate elliptic equations, Advances in Mathematics, 132 (1997), 24-45. doi: 10.1006/aima.1997.1677. Google Scholar

[3]

P. Guan and Y. Y. Li, The Weyl problem with nonnegative Gauss curvature, J. Diff. Geom., 39 (1994), 331-342. doi: 10.4310/jdg/1214454874. Google Scholar

[4]

P. Guan and E. Sawyer, Regularity of subelliptic Monge-Ampère equations in the plane, Trans. Amer. Math. Soc., 361 (2009), 4581-4591. doi: 10.1090/S0002-9947-09-04640-6. Google Scholar

[5]

J. Hong and C. Zuily, Isometric embedding of the 2-sphere with non negative curvature in $\mathbb{R}^3$, Math. Z., 219 (1995), 323-334. doi: 10.1007/BF02572368. Google Scholar

[6]

J. Iaia, The Weyl problem for surfaces of nonnegative curvature, Geometric Analysis and Nonlinear Partial Differential Equations (Denton, TX, 1990), 213–220, Lecture Notes in Pure and Appl. Math., 144, Dekker, New York, 1993. Google Scholar

[7]

J. Iaia, Isometric embeddings of surfaces with nonnegative curvature in $\mathbb{R}^3$, Duke Math. J., 67 (1992), 423-459. doi: 10.1215/S0012-7094-92-06717-2. Google Scholar

[8]

H. Lewy, On the existence of a closed convex surface realizing a given Riemannian metric, Proc. Nat. Acad. Sci., 24 (1938), 104-106. Google Scholar

[9]

Y. Y. Li and G. Weinstein, A priori bounds for co-dimension one isometric embeddings, Amer. J. of Math., 121 (1999), 945-965. doi: 10.1353/ajm.1999.0035. Google Scholar

[10]

C. S. Lin, The local isometric embedding in $\mathbb{R}^3$ of 2-dimensional Riemannian manifolds with nonnegative curvature, J. Diff. Geom., 21 (1985), 213-230. doi: 10.4310/jdg/1214439563. Google Scholar

[11]

L. Nirenberg, The Weyl and Minkowski problems in differential geometry in the large, Comm. Pure Appl. Math., 6 (1953), 337-394. doi: 10.1002/cpa.3160060303. Google Scholar

[12]

A. V. Pogorelov, An example of a two-dimensional Riemannian metric admitting no local realization in $E_3$, Dokl. Akad. Nauk SSSR, 198 (1971), 42-43. Google Scholar

[13]

F. Schulz, Regularity Theory for Quasilinear Elliptic Systems and Monge-Ampère Equations in Two Dimensions, Lect. Note. in Math., 1445, Springer-Verlag, Berlin, 1990. doi: 10.1007/BFb0098277. Google Scholar

[14]

H. Weyl, über die Bestimmung einer geschlossen konvexen Fläche durch ihr Linienelement, Vierteljahrsschrift Naturforsch. Gesellschaft, 61 (1916), 40-72. Google Scholar

show all references

References:
[1]

P. Daskalopoulos and O. Savin, On Monge-Ampère Equations with Homogeneous Right-Hand Sides, Comm. Pure Appl. Math, 62 (2009), 639-676. doi: 10.1002/cpa.20263. Google Scholar

[2]

P. Guan, Regularity of a class of quasilinear degenerate elliptic equations, Advances in Mathematics, 132 (1997), 24-45. doi: 10.1006/aima.1997.1677. Google Scholar

[3]

P. Guan and Y. Y. Li, The Weyl problem with nonnegative Gauss curvature, J. Diff. Geom., 39 (1994), 331-342. doi: 10.4310/jdg/1214454874. Google Scholar

[4]

P. Guan and E. Sawyer, Regularity of subelliptic Monge-Ampère equations in the plane, Trans. Amer. Math. Soc., 361 (2009), 4581-4591. doi: 10.1090/S0002-9947-09-04640-6. Google Scholar

[5]

J. Hong and C. Zuily, Isometric embedding of the 2-sphere with non negative curvature in $\mathbb{R}^3$, Math. Z., 219 (1995), 323-334. doi: 10.1007/BF02572368. Google Scholar

[6]

J. Iaia, The Weyl problem for surfaces of nonnegative curvature, Geometric Analysis and Nonlinear Partial Differential Equations (Denton, TX, 1990), 213–220, Lecture Notes in Pure and Appl. Math., 144, Dekker, New York, 1993. Google Scholar

[7]

J. Iaia, Isometric embeddings of surfaces with nonnegative curvature in $\mathbb{R}^3$, Duke Math. J., 67 (1992), 423-459. doi: 10.1215/S0012-7094-92-06717-2. Google Scholar

[8]

H. Lewy, On the existence of a closed convex surface realizing a given Riemannian metric, Proc. Nat. Acad. Sci., 24 (1938), 104-106. Google Scholar

[9]

Y. Y. Li and G. Weinstein, A priori bounds for co-dimension one isometric embeddings, Amer. J. of Math., 121 (1999), 945-965. doi: 10.1353/ajm.1999.0035. Google Scholar

[10]

C. S. Lin, The local isometric embedding in $\mathbb{R}^3$ of 2-dimensional Riemannian manifolds with nonnegative curvature, J. Diff. Geom., 21 (1985), 213-230. doi: 10.4310/jdg/1214439563. Google Scholar

[11]

L. Nirenberg, The Weyl and Minkowski problems in differential geometry in the large, Comm. Pure Appl. Math., 6 (1953), 337-394. doi: 10.1002/cpa.3160060303. Google Scholar

[12]

A. V. Pogorelov, An example of a two-dimensional Riemannian metric admitting no local realization in $E_3$, Dokl. Akad. Nauk SSSR, 198 (1971), 42-43. Google Scholar

[13]

F. Schulz, Regularity Theory for Quasilinear Elliptic Systems and Monge-Ampère Equations in Two Dimensions, Lect. Note. in Math., 1445, Springer-Verlag, Berlin, 1990. doi: 10.1007/BFb0098277. Google Scholar

[14]

H. Weyl, über die Bestimmung einer geschlossen konvexen Fläche durch ihr Linienelement, Vierteljahrsschrift Naturforsch. Gesellschaft, 61 (1916), 40-72. Google Scholar

[1]

Jérôme Bertrand. Prescription of Gauss curvature on compact hyperbolic orbifolds. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1269-1284. doi: 10.3934/dcds.2014.34.1269

[2]

Alberto Farina, Enrico Valdinoci. A pointwise gradient bound for elliptic equations on compact manifolds with nonnegative Ricci curvature. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1139-1144. doi: 10.3934/dcds.2011.30.1139

[3]

Cristian Enache. Maximum and minimum principles for a class of Monge-Ampère equations in the plane, with applications to surfaces of constant Gauss curvature. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1347-1359. doi: 10.3934/cpaa.2014.13.1347

[4]

Hichem Chtioui, Hichem Hajaiej, Marwa Soula. The scalar curvature problem on four-dimensional manifolds. Communications on Pure & Applied Analysis, 2020, 19 (2) : 723-746. doi: 10.3934/cpaa.2020034

[5]

Diego Castellaneta, Alberto Farina, Enrico Valdinoci. A pointwise gradient estimate for solutions of singular and degenerate pde's in possibly unbounded domains with nonnegative mean curvature. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1983-2003. doi: 10.3934/cpaa.2012.11.1983

[6]

Randa Ben Mahmoud, Hichem Chtioui. Prescribing the scalar curvature problem on higher-dimensional manifolds. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1857-1879. doi: 10.3934/dcds.2012.32.1857

[7]

Yaiza Canzani, Dmitry Jakobson, Igor Wigman. Scalar curvature and $Q$-curvature of random metrics. Electronic Research Announcements, 2010, 17: 43-56. doi: 10.3934/era.2010.17.43

[8]

Fabio Nicola. Remarks on dispersive estimates and curvature. Communications on Pure & Applied Analysis, 2007, 6 (1) : 203-212. doi: 10.3934/cpaa.2007.6.203

[9]

Vittorio Martino. On the characteristic curvature operator. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1911-1922. doi: 10.3934/cpaa.2012.11.1911

[10]

Chungen Liu, Yafang Wang. Existence results for the fractional Q-curvature problem on three dimensional CR sphere. Communications on Pure & Applied Analysis, 2018, 17 (3) : 849-885. doi: 10.3934/cpaa.2018043

[11]

Shao-Yuan Huang. Exact multiplicity and bifurcation curves of positive solutions of a one-dimensional Minkowski-curvature problem and its application. Communications on Pure & Applied Analysis, 2018, 17 (3) : 1271-1294. doi: 10.3934/cpaa.2018061

[12]

Yuxia Guo, Jianjun Nie. Infinitely many non-radial solutions for the prescribed curvature problem of fractional operator. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6873-6898. doi: 10.3934/dcds.2016099

[13]

Shao-Yuan Huang. Bifurcation diagrams of positive solutions for one-dimensional Minkowski-curvature problem and its applications. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3443-3462. doi: 10.3934/dcds.2019142

[14]

Ruyun Ma, Man Xu. Connected components of positive solutions for a Dirichlet problem involving the mean curvature operator in Minkowski space. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2701-2718. doi: 10.3934/dcdsb.2018271

[15]

Felipe Riquelme. Ruelle's inequality in negative curvature. Discrete & Continuous Dynamical Systems - A, 2018, 38 (6) : 2809-2825. doi: 10.3934/dcds.2018119

[16]

Yves Coudène, Barbara Schapira. Counterexamples in non-positive curvature. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1095-1106. doi: 10.3934/dcds.2011.30.1095

[17]

Stefanella Boatto. Curvature perturbations and stability of a ring of vortices. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 349-375. doi: 10.3934/dcdsb.2008.10.349

[18]

Shao-Yuan Huang. Global bifurcation and exact multiplicity of positive solutions for the one-dimensional Minkowski-curvature problem with sign-changing nonlinearity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3267-3284. doi: 10.3934/cpaa.2019147

[19]

G. Kamberov. Prescribing mean curvature: existence and uniqueness problems. Electronic Research Announcements, 1998, 4: 4-11.

[20]

Leif Arkeryd, Raffaele Esposito, Rossana Marra, Anne Nouri. Ghost effect by curvature in planar Couette flow. Kinetic & Related Models, 2011, 4 (1) : 109-138. doi: 10.3934/krm.2011.4.109

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (28)
  • HTML views (70)
  • Cited by (0)

Other articles
by authors

[Back to Top]