June  2019, 39(6): 3479-3520. doi: 10.3934/dcds.2019144

On the probabilistic well-posedness of the nonlinear Schrödinger equations with non-algebraic nonlinearities

1. 

School of Mathematics, The University of Edinburgh and The Maxwell Institute for the Mathematical Sciences, James Clerk Maxwell Building, The King's Buildings, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, United Kingdom

2. 

Division of Mathematics and Physics, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano City 380-8553, Japan

3. 

Department of Mathematics, Heriot-Watt University and The Maxwell Institute for the Mathematical Sciences, Edinburgh, EH14 4AS, United Kingdom

* Corresponding author: Tadahiro Oh

Received  September 2018 Published  February 2019

Fund Project: The first author was supported by the European Research Council (grant no. 637995 "ProbDynDispEq"). The second author was supported by JSPS KAKENHI Grant number JP16K17624.

We consider the Cauchy problem for the nonlinear Schrödinger equations (NLS) with non-algebraic nonlinearities on the Euclidean space. In particular, we study the energy-critical NLS on $ \mathbb{R}^d $, $ d = 5,6 $, and energy-critical NLS without gauge invariance and prove that they are almost surely locally well-posed with respect to randomized initial data below the energy space. We also study the long time behavior of solutions to these equations: (ⅰ) we prove almost sure global well-posedness of the (standard) energy-critical NLS on $ \mathbb{R}^d $, $ d = 5, 6 $, in the defocusing case, and (ⅱ) we present a probabilistic construction of finite time blowup solutions to the energy-critical NLS without gauge invariance below the energy space.

Citation: Tadahiro Oh, Mamoru Okamoto, Oana Pocovnicu. On the probabilistic well-posedness of the nonlinear Schrödinger equations with non-algebraic nonlinearities. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3479-3520. doi: 10.3934/dcds.2019144
References:
[1]

A. Ayache and N. Tzvetkov, $L^p$ properties for Gaussian random series, Trans. Amer. Math. Soc., 360 (2008), 4425-4439.  doi: 10.1090/S0002-9947-08-04456-5.  Google Scholar

[2]

Á. Bényi, T. Oh and O. Pocovnicu, Wiener randomization on unbounded domains and an application to almost sure well-posedness of NLS, Excursions in Harmonic Analysis, Vol. 4, 3–25, Appl. Numer. Harmon. Anal., Birkhäuser/Springer, Cham, 2015.  Google Scholar

[3]

Á. BényiT. Oh and O. Pocovnicu, On the probabilistic Cauchy theory of the cubic nonlinear Schrödinger equation on $ \mathbb{R} ^d$, $d \ge 3$, Trans. Amer. Math. Soc. Ser. B, 2 (2015), 1-50.  doi: 10.1090/btran/6.  Google Scholar

[4]

Á. Bényi, T. Oh and O. Pocovnicu, On the probabilistic Cauchy theory for nonlinear dispersive PDEs, Landscapes of Time-Frequency Analysis, 1–32, Appl. Numer. Harmon. Anal., Birkhäuser/Springer, Cham, 2019. Google Scholar

[5]

Á. Bényi, T. Oh and O. Pocovnicu, Higher order expansions for the probabilistic local Cauchy theory of the cubic nonlinear Schrödinger equation on $ \mathbb{R}^3$, to appear in Trans. Amer. Math. Soc. Google Scholar

[6]

J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. Ⅰ. Schrödinger equations, Geom. Funct. Anal., 3 (1993), 107-156.  doi: 10.1007/BF01896020.  Google Scholar

[7]

J. Bourgain, Invariant measures for the 2$D$-defocusing nonlinear Schrödinger equation, Comm. Math. Phys., 176 (1996), 421-445.  doi: 10.1007/BF02099556.  Google Scholar

[8]

J. Bourgain, Refinements of Strichartz' inequality and applications to 2$D$-NLS with critical nonlinearity, Internat. Math. Res. Notices, 1998, 253–283. doi: 10.1155/S1073792898000191.  Google Scholar

[9]

J. Brereton, Almost sure local well-posedness for the supercritical quintic NLS, Tunisian J. Math., 1 (2019), 427-453.  doi: 10.2140/tunis.2019.1.427.  Google Scholar

[10]

N. Burq and N. Tzvetkov, Random data Cauchy theory for supercritical wave equations I: Local theory, Invent. Math., 173 (2008), 449-475.  doi: 10.1007/s00222-008-0124-z.  Google Scholar

[11]

N. Burq and N. Tzvetkov, Probabilistic well-posedness for the cubic wave equation, J. Eur. Math. Soc. (JEMS), 16 (2014), 1-30.  doi: 10.4171/JEMS/426.  Google Scholar

[12]

T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, 10. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003. xiv+323 pp. doi: 10.1090/cln/010.  Google Scholar

[13]

T. Cazenave and F. Weissler, Some remarks on the nonlinear Schrödinger equation in the critical case, Nonlinear Semigroups, Partial Differential Equations and Attractors (Washington, DC, 1987), 18–29, Lecture Notes in Math., 1394, Springer, Berlin, 1989. doi: 10.1007/BFb0086749.  Google Scholar

[14]

M. Christ, Power series solution of a nonlinear Schrödinger equation, Mathematical Aspects of Nonlinear Dispersive Equations, 131–155, Ann. of Math. Stud., 163, Princeton Univ. Press, Princeton, NJ, 2007.  Google Scholar

[15]

M. Christ, J. Colliander and T. Tao, Ill-posedness for nonlinear Schrödinger and wave equations, arXiv: 0311048, [math.AP]. Google Scholar

[16]

J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in $\mathbb{R}^{3}$, Ann. of Math., (2) 167 (2008), 767–865. doi: 10.4007/annals.2008.167.767.  Google Scholar

[17]

J. Colliander and T. Oh, Almost sure well-posedness of the cubic nonlinear Schrödinger equation below $L^2(\mathbb{T})$, Duke Math. J., 161 (2012), 367-414.  doi: 10.1215/00127094-1507400.  Google Scholar

[18]

G. Da Prato and A. Debussche, Two-dimensional Navier-Stokes equations driven by a space-time white noise, J. Funct. Anal., 196 (2002), 180-210.  doi: 10.1006/jfan.2002.3919.  Google Scholar

[19]

G. Da Prato and A. Debussche, Strong solutions to the stochastic quantization equations, Ann. Probab., 31 (2003), 1900-1916.  doi: 10.1214/aop/1068646370.  Google Scholar

[20]

C. Deng and S. Cui, Random-data Cauchy problem for the Navier-Stokes equations on $\mathbb{T} ^3$, J. Differential Equations, 251 (2011), 902-917.  doi: 10.1016/j.jde.2011.05.002.  Google Scholar

[21]

P. Friz and M. Hairer, A Course on Rough Paths. With an Introduction to Regularity Structures, Universitext. Springer, Cham, 2014. xiv+251 pp. doi: 10.1007/978-3-319-08332-2.  Google Scholar

[22]

J. Ginibre and G. Velo, Smoothing properties and retarded estimates for some dispersive evolution equations, Comm. Math. Phys., 144 (1992), 163-188.  doi: 10.1007/BF02099195.  Google Scholar

[23]

M. Gubinelli and N. Perkowski, Lectures on Singular Stochastic PDEs, Ensaios Matemáticos [Mathematical Surveys], 29. Sociedade Brasileira de Matemática, Rio de Janeiro, 2015. 89 pp.  Google Scholar

[24]

M. Hadac, S. Herr and H. Koch, Well-posedness and scattering for the KP-Ⅱ equation in a critical space, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 917–941; Erratum to Well-posedness and Scattering for the KP-Ⅱ Equation in a Critical Space, Ann. Inst. H. Poincaré Anal. Non Linéaire 27 (2010), 971–972. doi: 10.1016/j.anihpc.2010.01.006.  Google Scholar

[25]

M. Hairer, Introduction to regularity structures, Braz. J. Probab. Stat., 29 (2015), 175-210.  doi: 10.1214/14-BJPS241.  Google Scholar

[26]

S. HerrD. Tataru and N. Tzvetkov, Global well-posedness of the energy-critical nonlinear Schrödinger equation with small initial data in $H^1 (\mathbb{T}^3)$, Duke Math. J., 159 (2011), 329-349.  doi: 10.1215/00127094-1415889.  Google Scholar

[27]

H. Hirayama and M. Okamoto, Random data Cauchy problem for the nonlinear Schrödinger equation with derivative nonlinearity, Discrete Contin. Dyn. Syst., 36 (2016), 6943-6974.  doi: 10.3934/dcds.2016102.  Google Scholar

[28]

M. Ikeda and T. Inui, Some non-existence results for the semilinear Schrödinger equation without gauge invariance, J. Math. Anal. Appl., 425 (2015), 758-773.  doi: 10.1016/j.jmaa.2015.01.003.  Google Scholar

[29]

M. Ikeda and T. Inui, Small data blow-up of $L^2$ or $H^1$-solution for the semilinear Schrödinger equation without gauge invariance, J. Evol. Equ., 15 (2015), 571-581.  doi: 10.1007/s00028-015-0273-7.  Google Scholar

[30]

M. Ikeda and Y. Wakasugi, Small-data blow-up of $L^2$-solution for the nonlinear Schrödinger equation without gauge invariance, Differential Integral Equations, 26 (2013), 1275-1285.   Google Scholar

[31]

A. Ionescu and B. Pausader, Global well-posedness of the energy-critical defocusing NLS on $ \mathbb{R}\times \mathbb{T}^3$, Comm. Math. Phys., 312 (2012), 781-831.  doi: 10.1007/s00220-012-1474-3.  Google Scholar

[32]

J. P. Kahane, Some Random Series of Functions, Second edition. Cambridge Studies in Advanced Mathematics, 5. Cambridge University Press, Cambridge, 1985. xiv+305 pp.  Google Scholar

[33]

M. Keel and T. Tao, Endpoint Strichartz estimates, Amer. J. Math., 120 (1998), 955-980.  doi: 10.1353/ajm.1998.0039.  Google Scholar

[34]

R. Killip and M. Vişan, The focusing energy-critical nonlinear Schrödinger equation in dimensions five and higher, Amer. J. Math., 132 (2010), 361-424.  doi: 10.1353/ajm.0.0107.  Google Scholar

[35]

R. KillipT. OhO. Pocovnicu and M. Vişan, Global well-posedness of the Gross-Pitaevskii and cubic-quintic nonlinear Schrödinger equations with non-vanishing boundary conditions, Math. Res. Lett., 19 (2012), 969-986.  doi: 10.4310/MRL.2012.v19.n5.a1.  Google Scholar

[36]

R. Killip, J. Murphy and M. Visan, Almost sure scattering for the energy-critical NLS with radial data below $H^1(\mathbb{R}^4)$, to appear in Comm. Partial Differential Equations. Google Scholar

[37]

H. Koch and D. Tataru, A priori bounds for the 1D cubic NLS in negative Sobolev spaces, Int. Math. Res. Not., 2007 (2007), Art. ID rnm053, 36 pp. doi: 10.1093/imrn/rnm053.  Google Scholar

[38]

J. Lührmann and D. Mendelson, Random data Cauchy theory for nonlinear wave equations of power-type on $ \mathbb{R} ^3$, Comm. Partial Differential Equations, 39 (2014), 2262-2283.  doi: 10.1080/03605302.2014.933239.  Google Scholar

[39]

J. Lührmann and D. Mendelson, On the almost sure global well-posedness of energy sub-critical nonlinear wave equations on $ \mathbb{R}^3$, New York J. Math., 22 (2016), 209-227.   Google Scholar

[40]

H. P. McKean, Statistical mechanics of nonlinear wave equations. Ⅳ. Cubic Schrödinger, Comm. Math. Phys., 168 (1995), 479–491. Erratum: "Statistical mechanics of nonlinear wave equations. IV. Cubic Schrödinger", Comm. Math. Phys., 173 (1995), 675. doi: 10.1007/BF02101840.  Google Scholar

[41]

T. Oh, A blowup result for the periodic NLS without gauge invariance, C. R. Math. Acad. Sci. Paris, 350 (2012), 389-392.  doi: 10.1016/j.crma.2012.04.009.  Google Scholar

[42]

T. Oh, On nonlinear Schrödinger equations with almost periodic initial data, SIAM J. Math. Anal., 47 (2015), 1253-1270.  doi: 10.1137/140973384.  Google Scholar

[43]

T. Oh, A remark on norm inflation with general initial data for the cubic nonlinear Schrödinger equations in negative Sobolev spaces, Funkcial. Ekvac., 60 (2017), 259-277.  doi: 10.1619/fesi.60.259.  Google Scholar

[44]

T. Oh and O. Pocovnicu, Probabilistic global well-posedness of the energy-critical defocusing quintic nonlinear wave equation on $ \mathbb{R}^3$, J. Math. Pures Appl., 105 (2016), 342-366.  doi: 10.1016/j.matpur.2015.11.003.  Google Scholar

[45]

T. Oh and J. Quastel, On Cameron-Martin theorem and almost sure global existence, Proc. Edinb. Math. Soc., 59 (2016), 483-501.  doi: 10.1017/S0013091515000218.  Google Scholar

[46]

T. Oh, N. Tzvetkov and Y. Wang, Solving the 4NLS with white noise initial data, preprint. Google Scholar

[47]

T. Ozawa and Y. Tsutsumi, Space-time estimates for null gauge forms and nonlinear Schrödinger equations, Differential Integral Equations, 11 (1998), 201-222.   Google Scholar

[48]

R. E. A. C. Paley and A. Zygmund, On some series of functions (1), (2), (3), Proc. Camb. Philos. Soc., 26 (1930), 337-357.   Google Scholar

[49]

O. Pocovnicu, Almost sure global well-posedness for the energy-critical defocusing nonlinear wave equation on $ \mathbb{R}^d$, $d = 4$ and $5$, J. Eur. Math. Soc. (JEMS), 19 (2017), 2521-2575.  doi: 10.4171/JEMS/723.  Google Scholar

[50]

R. S. Strichartz, Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J., 44 (1977), 705-714.  doi: 10.1215/S0012-7094-77-04430-1.  Google Scholar

[51]

C. Sun and B. Xia, Probabilistic well-posedness for supercritical wave equation on $ \mathbb{T}^3$, Illinois J. Math., 60 (2016), 481-503.   Google Scholar

[52]

T. Tao and M. Vişan, Stability of energy-critical nonlinear Schrödinger equations in high dimensions, Electron. J. Differential Equations, 2005 (2005), 28 pp.  Google Scholar

[53]

T. TaoM. Vişan and X. Zhang, The nonlinear Schrödinger equation with combined power-type nonlinearities, Comm. Partial Differential Equations, 32 (2007), 1281-1343.  doi: 10.1080/03605300701588805.  Google Scholar

[54]

L. Thomann, Random data Cauchy problem for supercritical Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 2385-2402.  doi: 10.1016/j.anihpc.2009.06.001.  Google Scholar

[55]

M. Vişan, The defocusing energy-critical nonlinear Schrödinger equation in higher dimensions, Duke Math. J., 138 (2007), 281-374.  doi: 10.1215/S0012-7094-07-13825-0.  Google Scholar

[56]

K. Yajima, Existence of solutions for Schrödinger evolution equations, Comm. Math. Phys., 110 (1987), 415-426.  doi: 10.1007/BF01212420.  Google Scholar

[57]

Q. S. Zhang, Blow-up results for nonlinear parabolic equations on manifolds, Duke Math. J., 97 (1999), 515-539.  doi: 10.1215/S0012-7094-99-09719-3.  Google Scholar

[58]

Q. S. Zhang, A blow-up result for a nonlinear wave equation with damping: The critical case, C. R. Acad. Sci. Paris, Ser. I, 333 (2001), 109-114.  doi: 10.1016/S0764-4442(01)01999-1.  Google Scholar

[59]

T. Zhang and D. Fang, Random data Cauchy theory for the generalized incompressible Navier-Stokes equations, J. Math. Fluid Mech., 14 (2012), 311-324.  doi: 10.1007/s00021-011-0069-7.  Google Scholar

show all references

References:
[1]

A. Ayache and N. Tzvetkov, $L^p$ properties for Gaussian random series, Trans. Amer. Math. Soc., 360 (2008), 4425-4439.  doi: 10.1090/S0002-9947-08-04456-5.  Google Scholar

[2]

Á. Bényi, T. Oh and O. Pocovnicu, Wiener randomization on unbounded domains and an application to almost sure well-posedness of NLS, Excursions in Harmonic Analysis, Vol. 4, 3–25, Appl. Numer. Harmon. Anal., Birkhäuser/Springer, Cham, 2015.  Google Scholar

[3]

Á. BényiT. Oh and O. Pocovnicu, On the probabilistic Cauchy theory of the cubic nonlinear Schrödinger equation on $ \mathbb{R} ^d$, $d \ge 3$, Trans. Amer. Math. Soc. Ser. B, 2 (2015), 1-50.  doi: 10.1090/btran/6.  Google Scholar

[4]

Á. Bényi, T. Oh and O. Pocovnicu, On the probabilistic Cauchy theory for nonlinear dispersive PDEs, Landscapes of Time-Frequency Analysis, 1–32, Appl. Numer. Harmon. Anal., Birkhäuser/Springer, Cham, 2019. Google Scholar

[5]

Á. Bényi, T. Oh and O. Pocovnicu, Higher order expansions for the probabilistic local Cauchy theory of the cubic nonlinear Schrödinger equation on $ \mathbb{R}^3$, to appear in Trans. Amer. Math. Soc. Google Scholar

[6]

J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. Ⅰ. Schrödinger equations, Geom. Funct. Anal., 3 (1993), 107-156.  doi: 10.1007/BF01896020.  Google Scholar

[7]

J. Bourgain, Invariant measures for the 2$D$-defocusing nonlinear Schrödinger equation, Comm. Math. Phys., 176 (1996), 421-445.  doi: 10.1007/BF02099556.  Google Scholar

[8]

J. Bourgain, Refinements of Strichartz' inequality and applications to 2$D$-NLS with critical nonlinearity, Internat. Math. Res. Notices, 1998, 253–283. doi: 10.1155/S1073792898000191.  Google Scholar

[9]

J. Brereton, Almost sure local well-posedness for the supercritical quintic NLS, Tunisian J. Math., 1 (2019), 427-453.  doi: 10.2140/tunis.2019.1.427.  Google Scholar

[10]

N. Burq and N. Tzvetkov, Random data Cauchy theory for supercritical wave equations I: Local theory, Invent. Math., 173 (2008), 449-475.  doi: 10.1007/s00222-008-0124-z.  Google Scholar

[11]

N. Burq and N. Tzvetkov, Probabilistic well-posedness for the cubic wave equation, J. Eur. Math. Soc. (JEMS), 16 (2014), 1-30.  doi: 10.4171/JEMS/426.  Google Scholar

[12]

T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, 10. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003. xiv+323 pp. doi: 10.1090/cln/010.  Google Scholar

[13]

T. Cazenave and F. Weissler, Some remarks on the nonlinear Schrödinger equation in the critical case, Nonlinear Semigroups, Partial Differential Equations and Attractors (Washington, DC, 1987), 18–29, Lecture Notes in Math., 1394, Springer, Berlin, 1989. doi: 10.1007/BFb0086749.  Google Scholar

[14]

M. Christ, Power series solution of a nonlinear Schrödinger equation, Mathematical Aspects of Nonlinear Dispersive Equations, 131–155, Ann. of Math. Stud., 163, Princeton Univ. Press, Princeton, NJ, 2007.  Google Scholar

[15]

M. Christ, J. Colliander and T. Tao, Ill-posedness for nonlinear Schrödinger and wave equations, arXiv: 0311048, [math.AP]. Google Scholar

[16]

J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in $\mathbb{R}^{3}$, Ann. of Math., (2) 167 (2008), 767–865. doi: 10.4007/annals.2008.167.767.  Google Scholar

[17]

J. Colliander and T. Oh, Almost sure well-posedness of the cubic nonlinear Schrödinger equation below $L^2(\mathbb{T})$, Duke Math. J., 161 (2012), 367-414.  doi: 10.1215/00127094-1507400.  Google Scholar

[18]

G. Da Prato and A. Debussche, Two-dimensional Navier-Stokes equations driven by a space-time white noise, J. Funct. Anal., 196 (2002), 180-210.  doi: 10.1006/jfan.2002.3919.  Google Scholar

[19]

G. Da Prato and A. Debussche, Strong solutions to the stochastic quantization equations, Ann. Probab., 31 (2003), 1900-1916.  doi: 10.1214/aop/1068646370.  Google Scholar

[20]

C. Deng and S. Cui, Random-data Cauchy problem for the Navier-Stokes equations on $\mathbb{T} ^3$, J. Differential Equations, 251 (2011), 902-917.  doi: 10.1016/j.jde.2011.05.002.  Google Scholar

[21]

P. Friz and M. Hairer, A Course on Rough Paths. With an Introduction to Regularity Structures, Universitext. Springer, Cham, 2014. xiv+251 pp. doi: 10.1007/978-3-319-08332-2.  Google Scholar

[22]

J. Ginibre and G. Velo, Smoothing properties and retarded estimates for some dispersive evolution equations, Comm. Math. Phys., 144 (1992), 163-188.  doi: 10.1007/BF02099195.  Google Scholar

[23]

M. Gubinelli and N. Perkowski, Lectures on Singular Stochastic PDEs, Ensaios Matemáticos [Mathematical Surveys], 29. Sociedade Brasileira de Matemática, Rio de Janeiro, 2015. 89 pp.  Google Scholar

[24]

M. Hadac, S. Herr and H. Koch, Well-posedness and scattering for the KP-Ⅱ equation in a critical space, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 917–941; Erratum to Well-posedness and Scattering for the KP-Ⅱ Equation in a Critical Space, Ann. Inst. H. Poincaré Anal. Non Linéaire 27 (2010), 971–972. doi: 10.1016/j.anihpc.2010.01.006.  Google Scholar

[25]

M. Hairer, Introduction to regularity structures, Braz. J. Probab. Stat., 29 (2015), 175-210.  doi: 10.1214/14-BJPS241.  Google Scholar

[26]

S. HerrD. Tataru and N. Tzvetkov, Global well-posedness of the energy-critical nonlinear Schrödinger equation with small initial data in $H^1 (\mathbb{T}^3)$, Duke Math. J., 159 (2011), 329-349.  doi: 10.1215/00127094-1415889.  Google Scholar

[27]

H. Hirayama and M. Okamoto, Random data Cauchy problem for the nonlinear Schrödinger equation with derivative nonlinearity, Discrete Contin. Dyn. Syst., 36 (2016), 6943-6974.  doi: 10.3934/dcds.2016102.  Google Scholar

[28]

M. Ikeda and T. Inui, Some non-existence results for the semilinear Schrödinger equation without gauge invariance, J. Math. Anal. Appl., 425 (2015), 758-773.  doi: 10.1016/j.jmaa.2015.01.003.  Google Scholar

[29]

M. Ikeda and T. Inui, Small data blow-up of $L^2$ or $H^1$-solution for the semilinear Schrödinger equation without gauge invariance, J. Evol. Equ., 15 (2015), 571-581.  doi: 10.1007/s00028-015-0273-7.  Google Scholar

[30]

M. Ikeda and Y. Wakasugi, Small-data blow-up of $L^2$-solution for the nonlinear Schrödinger equation without gauge invariance, Differential Integral Equations, 26 (2013), 1275-1285.   Google Scholar

[31]

A. Ionescu and B. Pausader, Global well-posedness of the energy-critical defocusing NLS on $ \mathbb{R}\times \mathbb{T}^3$, Comm. Math. Phys., 312 (2012), 781-831.  doi: 10.1007/s00220-012-1474-3.  Google Scholar

[32]

J. P. Kahane, Some Random Series of Functions, Second edition. Cambridge Studies in Advanced Mathematics, 5. Cambridge University Press, Cambridge, 1985. xiv+305 pp.  Google Scholar

[33]

M. Keel and T. Tao, Endpoint Strichartz estimates, Amer. J. Math., 120 (1998), 955-980.  doi: 10.1353/ajm.1998.0039.  Google Scholar

[34]

R. Killip and M. Vişan, The focusing energy-critical nonlinear Schrödinger equation in dimensions five and higher, Amer. J. Math., 132 (2010), 361-424.  doi: 10.1353/ajm.0.0107.  Google Scholar

[35]

R. KillipT. OhO. Pocovnicu and M. Vişan, Global well-posedness of the Gross-Pitaevskii and cubic-quintic nonlinear Schrödinger equations with non-vanishing boundary conditions, Math. Res. Lett., 19 (2012), 969-986.  doi: 10.4310/MRL.2012.v19.n5.a1.  Google Scholar

[36]

R. Killip, J. Murphy and M. Visan, Almost sure scattering for the energy-critical NLS with radial data below $H^1(\mathbb{R}^4)$, to appear in Comm. Partial Differential Equations. Google Scholar

[37]

H. Koch and D. Tataru, A priori bounds for the 1D cubic NLS in negative Sobolev spaces, Int. Math. Res. Not., 2007 (2007), Art. ID rnm053, 36 pp. doi: 10.1093/imrn/rnm053.  Google Scholar

[38]

J. Lührmann and D. Mendelson, Random data Cauchy theory for nonlinear wave equations of power-type on $ \mathbb{R} ^3$, Comm. Partial Differential Equations, 39 (2014), 2262-2283.  doi: 10.1080/03605302.2014.933239.  Google Scholar

[39]

J. Lührmann and D. Mendelson, On the almost sure global well-posedness of energy sub-critical nonlinear wave equations on $ \mathbb{R}^3$, New York J. Math., 22 (2016), 209-227.   Google Scholar

[40]

H. P. McKean, Statistical mechanics of nonlinear wave equations. Ⅳ. Cubic Schrödinger, Comm. Math. Phys., 168 (1995), 479–491. Erratum: "Statistical mechanics of nonlinear wave equations. IV. Cubic Schrödinger", Comm. Math. Phys., 173 (1995), 675. doi: 10.1007/BF02101840.  Google Scholar

[41]

T. Oh, A blowup result for the periodic NLS without gauge invariance, C. R. Math. Acad. Sci. Paris, 350 (2012), 389-392.  doi: 10.1016/j.crma.2012.04.009.  Google Scholar

[42]

T. Oh, On nonlinear Schrödinger equations with almost periodic initial data, SIAM J. Math. Anal., 47 (2015), 1253-1270.  doi: 10.1137/140973384.  Google Scholar

[43]

T. Oh, A remark on norm inflation with general initial data for the cubic nonlinear Schrödinger equations in negative Sobolev spaces, Funkcial. Ekvac., 60 (2017), 259-277.  doi: 10.1619/fesi.60.259.  Google Scholar

[44]

T. Oh and O. Pocovnicu, Probabilistic global well-posedness of the energy-critical defocusing quintic nonlinear wave equation on $ \mathbb{R}^3$, J. Math. Pures Appl., 105 (2016), 342-366.  doi: 10.1016/j.matpur.2015.11.003.  Google Scholar

[45]

T. Oh and J. Quastel, On Cameron-Martin theorem and almost sure global existence, Proc. Edinb. Math. Soc., 59 (2016), 483-501.  doi: 10.1017/S0013091515000218.  Google Scholar

[46]

T. Oh, N. Tzvetkov and Y. Wang, Solving the 4NLS with white noise initial data, preprint. Google Scholar

[47]

T. Ozawa and Y. Tsutsumi, Space-time estimates for null gauge forms and nonlinear Schrödinger equations, Differential Integral Equations, 11 (1998), 201-222.   Google Scholar

[48]

R. E. A. C. Paley and A. Zygmund, On some series of functions (1), (2), (3), Proc. Camb. Philos. Soc., 26 (1930), 337-357.   Google Scholar

[49]

O. Pocovnicu, Almost sure global well-posedness for the energy-critical defocusing nonlinear wave equation on $ \mathbb{R}^d$, $d = 4$ and $5$, J. Eur. Math. Soc. (JEMS), 19 (2017), 2521-2575.  doi: 10.4171/JEMS/723.  Google Scholar

[50]

R. S. Strichartz, Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J., 44 (1977), 705-714.  doi: 10.1215/S0012-7094-77-04430-1.  Google Scholar

[51]

C. Sun and B. Xia, Probabilistic well-posedness for supercritical wave equation on $ \mathbb{T}^3$, Illinois J. Math., 60 (2016), 481-503.   Google Scholar

[52]

T. Tao and M. Vişan, Stability of energy-critical nonlinear Schrödinger equations in high dimensions, Electron. J. Differential Equations, 2005 (2005), 28 pp.  Google Scholar

[53]

T. TaoM. Vişan and X. Zhang, The nonlinear Schrödinger equation with combined power-type nonlinearities, Comm. Partial Differential Equations, 32 (2007), 1281-1343.  doi: 10.1080/03605300701588805.  Google Scholar

[54]

L. Thomann, Random data Cauchy problem for supercritical Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 2385-2402.  doi: 10.1016/j.anihpc.2009.06.001.  Google Scholar

[55]

M. Vişan, The defocusing energy-critical nonlinear Schrödinger equation in higher dimensions, Duke Math. J., 138 (2007), 281-374.  doi: 10.1215/S0012-7094-07-13825-0.  Google Scholar

[56]

K. Yajima, Existence of solutions for Schrödinger evolution equations, Comm. Math. Phys., 110 (1987), 415-426.  doi: 10.1007/BF01212420.  Google Scholar

[57]

Q. S. Zhang, Blow-up results for nonlinear parabolic equations on manifolds, Duke Math. J., 97 (1999), 515-539.  doi: 10.1215/S0012-7094-99-09719-3.  Google Scholar

[58]

Q. S. Zhang, A blow-up result for a nonlinear wave equation with damping: The critical case, C. R. Acad. Sci. Paris, Ser. I, 333 (2001), 109-114.  doi: 10.1016/S0764-4442(01)01999-1.  Google Scholar

[59]

T. Zhang and D. Fang, Random data Cauchy theory for the generalized incompressible Navier-Stokes equations, J. Math. Fluid Mech., 14 (2012), 311-324.  doi: 10.1007/s00021-011-0069-7.  Google Scholar

[1]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[2]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[3]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020264

[4]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[5]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[6]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020276

[7]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[8]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[9]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[10]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[11]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[12]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[13]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[14]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[15]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[16]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[17]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[18]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[19]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[20]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (176)
  • HTML views (667)
  • Cited by (4)

Other articles
by authors

[Back to Top]