June  2019, 39(6): 3577-3608. doi: 10.3934/dcds.2019147

Well-posedness of general 1D initial boundary value problems for scalar balance laws

Inria Sophia Antipolis - Méditerranée, Université Côte d'Azur, Inria, CNRS, LJAD, 2004 route des Lucioles - BP 93, 06902 Sophia Antipolis Cedex, France

* Corresponding author: Elena Rossi

Received  October 2018 Revised  November 2018 Published  February 2019

We focus on the initial boundary value problem for a general scalar balance law in one space dimension. Under rather general assumptions on the flux and source functions, we prove the well-posedness of this problem and the stability of its solutions with respect to variations in the flux and in the source terms. For both results, the initial and boundary data are required to be bounded functions with bounded total variation. The existence of solutions is obtained from the convergence of a Lax–Friedrichs type algorithm with operator splitting. The stability result follows from an application of Kružkov's doubling of variables technique, together with a careful treatment of the boundary terms.

Citation: Elena Rossi. Well-posedness of general 1D initial boundary value problems for scalar balance laws. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3577-3608. doi: 10.3934/dcds.2019147
References:
[1]

C. BardosA. Y. le Roux and J.-C. Nédélec, First order quasilinear equations with boundary conditions, Comm. Partial Differential Equations, 4 (1979), 1017-1034. doi: 10.1080/03605307908820117. Google Scholar

[2]

F. Bouchut and B. Perthame, Kružkov's estimates for scalar conservation laws revisited, Trans. Amer. Math. Soc., 350 (1998), 2847-2870. doi: 10.1090/S0002-9947-98-02204-1. Google Scholar

[3]

R. M. Colombo and E. Rossi, Stability of the 1D IBVP for a non autonomous scalar conservation law, Proc. Roy. Soc. Edinburgh Sect. A, To appear, arXiv: 1601.05948. doi: 10.1017/prm.2018.39. Google Scholar

[4]

R. M. Colombo and E. Rossi, Rigorous estimates on balance laws in bounded domains, Acta Math. Sci. Ser. B Engl. Ed., 35 (2015), 906-944. doi: 10.1016/S0252-9602(15)30028-X. Google Scholar

[5]

R. M. Colombo and E. Rossi, IBVPs for scalar conservation laws with time discontinuous fluxes, Math. Methods Appl. Sci., 41 (2018), 1463-1479. doi: 10.1002/mma.4676. Google Scholar

[6]

R. M. Colombo and E. Rossi, Nonlocal conservation laws in bounded domains, SIAM J. Math. Anal., 50 (2018), 4041-4065. doi: 10.1137/18M1171783. Google Scholar

[7]

C. De Filippis and P. Goatin, The initial-boundary value problem for general non-local scalar conservation laws in one space dimension, Nonlinear Anal., 161 (2017), 131-156. doi: 10.1016/j.na.2017.05.017. Google Scholar

[8]

R. Eymard, T. Gallouët and R. Herbin, Finite volume methods, in Handbook of Numerical Analysis, Vol. VII, Handb. Numer. Anal., Ⅶ, North-Holland, Amsterdam, 2000, 713–1020. Google Scholar

[9]

K. H. Karlsen and N. H. Risebro, On the uniqueness and stability of entropy solutions of nonlinear degenerate parabolic equations with rough coefficients, Discrete Contin. Dyn. Syst., 9 (2003), 1081-1104. doi: 10.3934/dcds.2003.9.1081. Google Scholar

[10]

S. N. Kružhkov, First order quasilinear equations with several independent variables., Mat. Sb. (N.S.), 81 (1970), 228-255. Google Scholar

[11]

J. Málek, J. Nečas, M. Rokyta and M. Růžička, Weak and Measure-Valued Solutions to Evolutionary PDEs, vol. 13 of Applied Mathematics and Mathematical Computation, Chapman & Hall, London, 1996. Google Scholar

[12]

S. Martin, First order quasilinear equations with boundary conditions in the $L^\infty$ framework, J. Differential Equations, 236 (2007), 375-406. doi: 10.1016/j.jde.2007.02.007. Google Scholar

[13]

F. Otto, Initial-boundary value problem for a scalar conservation law, C. R. Acad. Sci. Paris Sér. I Math., 322 (1996), 729-734. Google Scholar

[14]

E. Rossi, Definitions of solutions to the IBVP for multi-dimensional scalar balance laws, J. Hyperbolic Differ. Equ., 15 (2018), 349-374. doi: 10.1142/S0219891618500133. Google Scholar

[15]

J. Vovelle, Convergence of finite volume monotone schemes for scalar conservation laws on bounded domains, Numer. Math., 90 (2002), 563-596. doi: 10.1007/s002110100307. Google Scholar

show all references

References:
[1]

C. BardosA. Y. le Roux and J.-C. Nédélec, First order quasilinear equations with boundary conditions, Comm. Partial Differential Equations, 4 (1979), 1017-1034. doi: 10.1080/03605307908820117. Google Scholar

[2]

F. Bouchut and B. Perthame, Kružkov's estimates for scalar conservation laws revisited, Trans. Amer. Math. Soc., 350 (1998), 2847-2870. doi: 10.1090/S0002-9947-98-02204-1. Google Scholar

[3]

R. M. Colombo and E. Rossi, Stability of the 1D IBVP for a non autonomous scalar conservation law, Proc. Roy. Soc. Edinburgh Sect. A, To appear, arXiv: 1601.05948. doi: 10.1017/prm.2018.39. Google Scholar

[4]

R. M. Colombo and E. Rossi, Rigorous estimates on balance laws in bounded domains, Acta Math. Sci. Ser. B Engl. Ed., 35 (2015), 906-944. doi: 10.1016/S0252-9602(15)30028-X. Google Scholar

[5]

R. M. Colombo and E. Rossi, IBVPs for scalar conservation laws with time discontinuous fluxes, Math. Methods Appl. Sci., 41 (2018), 1463-1479. doi: 10.1002/mma.4676. Google Scholar

[6]

R. M. Colombo and E. Rossi, Nonlocal conservation laws in bounded domains, SIAM J. Math. Anal., 50 (2018), 4041-4065. doi: 10.1137/18M1171783. Google Scholar

[7]

C. De Filippis and P. Goatin, The initial-boundary value problem for general non-local scalar conservation laws in one space dimension, Nonlinear Anal., 161 (2017), 131-156. doi: 10.1016/j.na.2017.05.017. Google Scholar

[8]

R. Eymard, T. Gallouët and R. Herbin, Finite volume methods, in Handbook of Numerical Analysis, Vol. VII, Handb. Numer. Anal., Ⅶ, North-Holland, Amsterdam, 2000, 713–1020. Google Scholar

[9]

K. H. Karlsen and N. H. Risebro, On the uniqueness and stability of entropy solutions of nonlinear degenerate parabolic equations with rough coefficients, Discrete Contin. Dyn. Syst., 9 (2003), 1081-1104. doi: 10.3934/dcds.2003.9.1081. Google Scholar

[10]

S. N. Kružhkov, First order quasilinear equations with several independent variables., Mat. Sb. (N.S.), 81 (1970), 228-255. Google Scholar

[11]

J. Málek, J. Nečas, M. Rokyta and M. Růžička, Weak and Measure-Valued Solutions to Evolutionary PDEs, vol. 13 of Applied Mathematics and Mathematical Computation, Chapman & Hall, London, 1996. Google Scholar

[12]

S. Martin, First order quasilinear equations with boundary conditions in the $L^\infty$ framework, J. Differential Equations, 236 (2007), 375-406. doi: 10.1016/j.jde.2007.02.007. Google Scholar

[13]

F. Otto, Initial-boundary value problem for a scalar conservation law, C. R. Acad. Sci. Paris Sér. I Math., 322 (1996), 729-734. Google Scholar

[14]

E. Rossi, Definitions of solutions to the IBVP for multi-dimensional scalar balance laws, J. Hyperbolic Differ. Equ., 15 (2018), 349-374. doi: 10.1142/S0219891618500133. Google Scholar

[15]

J. Vovelle, Convergence of finite volume monotone schemes for scalar conservation laws on bounded domains, Numer. Math., 90 (2002), 563-596. doi: 10.1007/s002110100307. Google Scholar

[1]

Ivonne Rivas, Muhammad Usman, Bing-Yu Zhang. Global well-posedness and asymptotic behavior of a class of initial-boundary-value problem of the Korteweg-De Vries equation on a finite domain. Mathematical Control & Related Fields, 2011, 1 (1) : 61-81. doi: 10.3934/mcrf.2011.1.61

[2]

Gilles Carbou, Bernard Hanouzet. Relaxation approximation of the Kerr model for the impedance initial-boundary value problem. Conference Publications, 2007, 2007 (Special) : 212-220. doi: 10.3934/proc.2007.2007.212

[3]

Xianpeng Hu, Dehua Wang. The initial-boundary value problem for the compressible viscoelastic flows. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 917-934. doi: 10.3934/dcds.2015.35.917

[4]

Hermano Frid. Invariant regions under Lax-Friedrichs scheme for multidimensional systems of conservation laws. Discrete & Continuous Dynamical Systems - A, 1995, 1 (4) : 585-593. doi: 10.3934/dcds.1995.1.585

[5]

Fujun Zhou, Shangbin Cui. Well-posedness and stability of a multidimensional moving boundary problem modeling the growth of tumor cord. Discrete & Continuous Dynamical Systems - A, 2008, 21 (3) : 929-943. doi: 10.3934/dcds.2008.21.929

[6]

Joachim Escher, Anca-Voichita Matioc. Well-posedness and stability analysis for a moving boundary problem modelling the growth of nonnecrotic tumors. Discrete & Continuous Dynamical Systems - B, 2011, 15 (3) : 573-596. doi: 10.3934/dcdsb.2011.15.573

[7]

Xiaoyun Cai, Liangwen Liao, Yongzhong Sun. Global strong solution to the initial-boundary value problem of a 2-D Kazhikhov-Smagulov type model. Discrete & Continuous Dynamical Systems - S, 2014, 7 (5) : 917-923. doi: 10.3934/dcdss.2014.7.917

[8]

Yi Zhou, Jianli Liu. The initial-boundary value problem on a strip for the equation of time-like extremal surfaces. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 381-397. doi: 10.3934/dcds.2009.23.381

[9]

Martn P. Árciga Alejandre, Elena I. Kaikina. Mixed initial-boundary value problem for Ott-Sudan-Ostrovskiy equation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (2) : 381-409. doi: 10.3934/dcds.2012.32.381

[10]

Peng Jiang. Unique global solution of an initial-boundary value problem to a diffusion approximation model in radiation hydrodynamics. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 3015-3037. doi: 10.3934/dcds.2015.35.3015

[11]

Michal Beneš. Mixed initial-boundary value problem for the three-dimensional Navier-Stokes equations in polyhedral domains. Conference Publications, 2011, 2011 (Special) : 135-144. doi: 10.3934/proc.2011.2011.135

[12]

Haifeng Hu, Kaijun Zhang. Analysis on the initial-boundary value problem of a full bipolar hydrodynamic model for semiconductors. Discrete & Continuous Dynamical Systems - B, 2014, 19 (6) : 1601-1626. doi: 10.3934/dcdsb.2014.19.1601

[13]

Tatsien Li, Libin Wang. Global classical solutions to a kind of mixed initial-boundary value problem for quasilinear hyperbolic systems. Discrete & Continuous Dynamical Systems - A, 2005, 12 (1) : 59-78. doi: 10.3934/dcds.2005.12.59

[14]

Türker Özsarı, Nermin Yolcu. The initial-boundary value problem for the biharmonic Schrödinger equation on the half-line. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3285-3316. doi: 10.3934/cpaa.2019148

[15]

Hermen Jan Hupkes, Emmanuelle Augeraud-Véron. Well-posedness of initial value problems for functional differential and algebraic equations of mixed type. Discrete & Continuous Dynamical Systems - A, 2011, 30 (3) : 737-765. doi: 10.3934/dcds.2011.30.737

[16]

Paolo Baiti, Alberto Bressan, Helge Kristian Jenssen. Instability of travelling wave profiles for the Lax-Friedrichs scheme. Discrete & Continuous Dynamical Systems - A, 2005, 13 (4) : 877-899. doi: 10.3934/dcds.2005.13.877

[17]

Zhi-Qiang Shao. Lifespan of classical discontinuous solutions to the generalized nonlinear initial-boundary Riemann problem for hyperbolic conservation laws with small BV data: shocks and contact discontinuities. Communications on Pure & Applied Analysis, 2015, 14 (3) : 759-792. doi: 10.3934/cpaa.2015.14.759

[18]

Linglong Du, Caixuan Ren. Pointwise wave behavior of the initial-boundary value problem for the nonlinear damped wave equation in $\mathbb{R}_{+}^{n} $. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3265-3280. doi: 10.3934/dcdsb.2018319

[19]

Vishal Vasan, Bernard Deconinck. Well-posedness of boundary-value problems for the linear Benjamin-Bona-Mahony equation. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 3171-3188. doi: 10.3934/dcds.2013.33.3171

[20]

Boris P. Andreianov, Giuseppe Maria Coclite, Carlotta Donadello. Well-posedness for vanishing viscosity solutions of scalar conservation laws on a network. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5913-5942. doi: 10.3934/dcds.2017257

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (50)
  • HTML views (75)
  • Cited by (0)

Other articles
by authors

[Back to Top]