June  2019, 39(6): 3577-3608. doi: 10.3934/dcds.2019147

Well-posedness of general 1D initial boundary value problems for scalar balance laws

Inria Sophia Antipolis - Méditerranée, Université Côte d'Azur, Inria, CNRS, LJAD, 2004 route des Lucioles - BP 93, 06902 Sophia Antipolis Cedex, France

* Corresponding author: Elena Rossi

Received  October 2018 Revised  November 2018 Published  February 2019

We focus on the initial boundary value problem for a general scalar balance law in one space dimension. Under rather general assumptions on the flux and source functions, we prove the well-posedness of this problem and the stability of its solutions with respect to variations in the flux and in the source terms. For both results, the initial and boundary data are required to be bounded functions with bounded total variation. The existence of solutions is obtained from the convergence of a Lax–Friedrichs type algorithm with operator splitting. The stability result follows from an application of Kružkov's doubling of variables technique, together with a careful treatment of the boundary terms.

Citation: Elena Rossi. Well-posedness of general 1D initial boundary value problems for scalar balance laws. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3577-3608. doi: 10.3934/dcds.2019147
References:
[1]

C. BardosA. Y. le Roux and J.-C. Nédélec, First order quasilinear equations with boundary conditions, Comm. Partial Differential Equations, 4 (1979), 1017-1034.  doi: 10.1080/03605307908820117.  Google Scholar

[2]

F. Bouchut and B. Perthame, Kružkov's estimates for scalar conservation laws revisited, Trans. Amer. Math. Soc., 350 (1998), 2847-2870.  doi: 10.1090/S0002-9947-98-02204-1.  Google Scholar

[3]

R. M. Colombo and E. Rossi, Stability of the 1D IBVP for a non autonomous scalar conservation law, Proc. Roy. Soc. Edinburgh Sect. A, To appear, arXiv: 1601.05948. doi: 10.1017/prm.2018.39.  Google Scholar

[4]

R. M. Colombo and E. Rossi, Rigorous estimates on balance laws in bounded domains, Acta Math. Sci. Ser. B Engl. Ed., 35 (2015), 906-944.  doi: 10.1016/S0252-9602(15)30028-X.  Google Scholar

[5]

R. M. Colombo and E. Rossi, IBVPs for scalar conservation laws with time discontinuous fluxes, Math. Methods Appl. Sci., 41 (2018), 1463-1479.  doi: 10.1002/mma.4676.  Google Scholar

[6]

R. M. Colombo and E. Rossi, Nonlocal conservation laws in bounded domains, SIAM J. Math. Anal., 50 (2018), 4041-4065.  doi: 10.1137/18M1171783.  Google Scholar

[7]

C. De Filippis and P. Goatin, The initial-boundary value problem for general non-local scalar conservation laws in one space dimension, Nonlinear Anal., 161 (2017), 131-156.  doi: 10.1016/j.na.2017.05.017.  Google Scholar

[8]

R. Eymard, T. Gallouët and R. Herbin, Finite volume methods, in Handbook of Numerical Analysis, Vol. VII, Handb. Numer. Anal., Ⅶ, North-Holland, Amsterdam, 2000, 713–1020.  Google Scholar

[9]

K. H. Karlsen and N. H. Risebro, On the uniqueness and stability of entropy solutions of nonlinear degenerate parabolic equations with rough coefficients, Discrete Contin. Dyn. Syst., 9 (2003), 1081-1104.  doi: 10.3934/dcds.2003.9.1081.  Google Scholar

[10]

S. N. Kružhkov, First order quasilinear equations with several independent variables., Mat. Sb. (N.S.), 81 (1970), 228-255.   Google Scholar

[11]

J. Málek, J. Nečas, M. Rokyta and M. Růžička, Weak and Measure-Valued Solutions to Evolutionary PDEs, vol. 13 of Applied Mathematics and Mathematical Computation, Chapman & Hall, London, 1996.  Google Scholar

[12]

S. Martin, First order quasilinear equations with boundary conditions in the $L^\infty$ framework, J. Differential Equations, 236 (2007), 375-406.  doi: 10.1016/j.jde.2007.02.007.  Google Scholar

[13]

F. Otto, Initial-boundary value problem for a scalar conservation law, C. R. Acad. Sci. Paris Sér. I Math., 322 (1996), 729-734.   Google Scholar

[14]

E. Rossi, Definitions of solutions to the IBVP for multi-dimensional scalar balance laws, J. Hyperbolic Differ. Equ., 15 (2018), 349-374.  doi: 10.1142/S0219891618500133.  Google Scholar

[15]

J. Vovelle, Convergence of finite volume monotone schemes for scalar conservation laws on bounded domains, Numer. Math., 90 (2002), 563-596.  doi: 10.1007/s002110100307.  Google Scholar

show all references

References:
[1]

C. BardosA. Y. le Roux and J.-C. Nédélec, First order quasilinear equations with boundary conditions, Comm. Partial Differential Equations, 4 (1979), 1017-1034.  doi: 10.1080/03605307908820117.  Google Scholar

[2]

F. Bouchut and B. Perthame, Kružkov's estimates for scalar conservation laws revisited, Trans. Amer. Math. Soc., 350 (1998), 2847-2870.  doi: 10.1090/S0002-9947-98-02204-1.  Google Scholar

[3]

R. M. Colombo and E. Rossi, Stability of the 1D IBVP for a non autonomous scalar conservation law, Proc. Roy. Soc. Edinburgh Sect. A, To appear, arXiv: 1601.05948. doi: 10.1017/prm.2018.39.  Google Scholar

[4]

R. M. Colombo and E. Rossi, Rigorous estimates on balance laws in bounded domains, Acta Math. Sci. Ser. B Engl. Ed., 35 (2015), 906-944.  doi: 10.1016/S0252-9602(15)30028-X.  Google Scholar

[5]

R. M. Colombo and E. Rossi, IBVPs for scalar conservation laws with time discontinuous fluxes, Math. Methods Appl. Sci., 41 (2018), 1463-1479.  doi: 10.1002/mma.4676.  Google Scholar

[6]

R. M. Colombo and E. Rossi, Nonlocal conservation laws in bounded domains, SIAM J. Math. Anal., 50 (2018), 4041-4065.  doi: 10.1137/18M1171783.  Google Scholar

[7]

C. De Filippis and P. Goatin, The initial-boundary value problem for general non-local scalar conservation laws in one space dimension, Nonlinear Anal., 161 (2017), 131-156.  doi: 10.1016/j.na.2017.05.017.  Google Scholar

[8]

R. Eymard, T. Gallouët and R. Herbin, Finite volume methods, in Handbook of Numerical Analysis, Vol. VII, Handb. Numer. Anal., Ⅶ, North-Holland, Amsterdam, 2000, 713–1020.  Google Scholar

[9]

K. H. Karlsen and N. H. Risebro, On the uniqueness and stability of entropy solutions of nonlinear degenerate parabolic equations with rough coefficients, Discrete Contin. Dyn. Syst., 9 (2003), 1081-1104.  doi: 10.3934/dcds.2003.9.1081.  Google Scholar

[10]

S. N. Kružhkov, First order quasilinear equations with several independent variables., Mat. Sb. (N.S.), 81 (1970), 228-255.   Google Scholar

[11]

J. Málek, J. Nečas, M. Rokyta and M. Růžička, Weak and Measure-Valued Solutions to Evolutionary PDEs, vol. 13 of Applied Mathematics and Mathematical Computation, Chapman & Hall, London, 1996.  Google Scholar

[12]

S. Martin, First order quasilinear equations with boundary conditions in the $L^\infty$ framework, J. Differential Equations, 236 (2007), 375-406.  doi: 10.1016/j.jde.2007.02.007.  Google Scholar

[13]

F. Otto, Initial-boundary value problem for a scalar conservation law, C. R. Acad. Sci. Paris Sér. I Math., 322 (1996), 729-734.   Google Scholar

[14]

E. Rossi, Definitions of solutions to the IBVP for multi-dimensional scalar balance laws, J. Hyperbolic Differ. Equ., 15 (2018), 349-374.  doi: 10.1142/S0219891618500133.  Google Scholar

[15]

J. Vovelle, Convergence of finite volume monotone schemes for scalar conservation laws on bounded domains, Numer. Math., 90 (2002), 563-596.  doi: 10.1007/s002110100307.  Google Scholar

[1]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[2]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[3]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052

[4]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[5]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[6]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[7]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[8]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[9]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[10]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[11]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[12]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[13]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[14]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[15]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[16]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[17]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020275

[18]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[19]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[20]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (133)
  • HTML views (118)
  • Cited by (2)

Other articles
by authors

[Back to Top]