June  2019, 39(6): 3609-3634. doi: 10.3934/dcds.2019148

Limited regularity of solutions to fractional heat and Schrödinger equations

Department of Mathematical Sciences, Copenhagen University, Universitetsparken 5, DK-2100 Copenhagen, Denmark

Received  October 2018 Revised  December 2018 Published  February 2019

When $ P$ is the fractional Laplacian $ (-\Delta )^a$, $ 0<a<1$, or a pseudodifferential generalization thereof, the Dirichlet problem for the associated heat equation over a smooth set $ \Omega \subset{\Bbb R}^n$: $ r^+Pu(x, t)+\partial_tu(x, t) = f(x, t)$ on $ \Omega \times \, ]0, T[\, $, $ u(x, t) = 0$ for $ x\notin\Omega$, $ u(x, 0) = 0$, is known to be solvable in relatively low-order Sobolev or Hölder spaces. We now show that in contrast with differential operator cases, the regularity of $ u$ in $ x$ at $ \partial\Omega$ when $ f$ is very smooth cannot in general be improved beyond a certain estimate. An improvement requires the vanishing of a Neumann boundary value. --- There is a similar result for the Schrödinger Dirichlet problem $ r^+Pv(x)+Vv(x) = g(x)$ on $ \Omega$, $ \text{supp } v\subset\overline\Omega$, with $ V(x)\in C^\infty$. The proofs involve a precise description, of interest in itself, of the Dirichlet domains in terms of regular functions and functions with a $ \text{dist}(x, \partial\Omega )^a$ singularity.

Citation: Gerd Grubb. Limited regularity of solutions to fractional heat and Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3609-3634. doi: 10.3934/dcds.2019148
References:
[1]

N. Abatangelo, Large s-harmonic functions and boundary blow-up solutions for the fractional Laplacian, Discrete Contin. Dyn. Syst., 35 (2015), 5555-5607. doi: 10.3934/dcds.2015.35.5555. Google Scholar

[2]

N. Abatangelo, S. Dipierro, M. M. Fall, S. Jarohs and A. Saldana, Positive powers of the Laplacian in the half-space under Dirichlet boundary conditions, arXiv: 1806.05128.Google Scholar

[3]

N. Abatangelo, S. Jarohs and A. Saldana, Integral representation of solutions to higher-order fractional Dirichlet problems on balls, Comm. Contemp. Math., 20 (2018), 1850002, 36 pp, arXiv: 1707.03603. doi: 10.1142/S0219199718500025. Google Scholar

[4]

H. Amann, Operator-valued Fourier multipliers, vector-valued Besov spaces, and applications, Math. Nachr., 186 (1997), 5-56. doi: 10.1002/mana.3211860102. Google Scholar

[5]

U. Biccari, M. Warma and E. Zuazua, Local regularity for fractional heat equations, arXiv: 1704.07562.Google Scholar

[6]

B. M. Blumenthal and R. K. Getoor, The asymptotic distribution of the eigenvalues for a class of Markov operators, Pacific J. Math., 9 (1959), 399-408. Google Scholar

[7]

K. BogdanK. Burdzy and Z.-Q. Chen, Censored stable processes, Prob. Theory Related Fields, 127 (2003), 89-152. doi: 10.1007/s00440-003-0275-1. Google Scholar

[8]

M. BonforteY. Sire and J. L. Vazquez, Existence, uniqueness and asymptotic behaviour for fractional porous medium equations on bounded domains, Discrete Contin. Dyn. Syst., 35 (2015), 5725-5767. doi: 10.3934/dcds.2015.35.5725. Google Scholar

[9]

L. Boutet de Monvel, Boundary problems for pseudo-differential operators, Acta Math., 126 (1971), 11-51. doi: 10.1007/BF02392024. Google Scholar

[10]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Part. Diff. Eq., 32 (2007), 1245-1260. doi: 10.1080/03605300600987306. Google Scholar

[11]

H. Chang-Lara and G. Davila, Regularity for solutions of non local parabolic equations, Calc. Var. Part. Diff. Equations, 49 (2014), 139-172. doi: 10.1007/s00526-012-0576-2. Google Scholar

[12]

Z.-Q. Chen and R. Song, Estimates on Green functions and Poisson kernels for symmetric stable processes, Math. Ann., 312 (1998), 465-501. doi: 10.1007/s002080050232. Google Scholar

[13]

R. Cont and P. Tankov, Financial Modelling with Jump Processes, Financial Mathematics Series, Chapman & Hall/CRC, Boca Raton, FL, 2004. Google Scholar

[14]

R. Courant and D. Hilbert, Methods of Mathematical Physics II, Interscience Publishers, New York, 1962.Google Scholar

[15]

J. I. Diaz, D. Gomez-Castro and J. L. Vazquez, The fractional Schrödinger equation with general nonnegative potentials, The weighted space approach, arXiv: 1804.08398.Google Scholar

[16]

M. M. Fall, Regularity estimates for nonlocal Schrödinger equations, arXiv: 1711.02206.Google Scholar

[17]

M. Felsinger and M. Kassmann, Local regularity for parabolic nonlocal operators, Comm. Part. Diff. Equations, 38 (2013), 1539-1573. doi: 10.1080/03605302.2013.808211. Google Scholar

[18]

M. FelsingerM. Kassmann and P. Voigt, The Dirichlet problem for nonlocal operators, Math. Z., 279 (2015), 779-809. doi: 10.1007/s00209-014-1394-3. Google Scholar

[19]

X. Fernandez-Real and X. Ros-Oton, Regularity theory for general stable operators: Parabolic equations, J. Funct. Anal., 272 (2017), 4165-4221. doi: 10.1016/j.jfa.2017.02.015. Google Scholar

[20]

R. Frank and L. Geisinger, Refined semiclassical asymptotics for fractional powers of the Laplace operator, J. Reine Angew. Math., 712 (2016), 1-37. doi: 10.1515/crelle-2013-0120. Google Scholar

[21]

T. Ghosh, M. Salo and G. Uhlmann, The Calderón problem for the fractional Schrödinger equation, arXiv: 1609.09248.Google Scholar

[22]

M. GonzalezR. Mazzeo and Y. Sire, Singular solutions of fractional order conformal Laplacians, J. Geom. Anal., 22 (2012), 845-863. doi: 10.1007/s12220-011-9217-9. Google Scholar

[23]

G. Grubb, Pseudo-differential boundary problems in Lp spaces, Comm. Part. Diff. Eq., 15 (1990), 289-340. doi: 10.1080/03605309908820688. Google Scholar

[24]

G. Grubb, Functional Calculus of Pseudodifferential Boundary Problems, Progress in Math. vol. 65, Second Edition, Birkhäuser, Boston, 1996. doi: 10.1007/978-1-4612-0769-6. Google Scholar

[25]

G. Grubb, Distributions and Operators. Graduate Texts in Mathematics, 252, Springer, New York, 2009. Google Scholar

[26]

G. Grubb, Local and nonlocal boundary conditions for µ-transmission and fractional elliptic pseudodifferential operators, Analysis and P.D.E., 7 (2014), 1649-1682. doi: 10.2140/apde.2014.7.1649. Google Scholar

[27]

G. Grubb, Fractional Laplacians on domains, a development of Hörmander's theory of µ-transmission pseudodifferential operators, Adv. Math., 268 (2015), 478-528. doi: 10.1016/j.aim.2014.09.018. Google Scholar

[28]

G. Grubb, Spectral results for mixed problems and fractional elliptic operators, J. Math. Anal. Appl., 421 (2015), 1616-1634. doi: 10.1016/j.jmaa.2014.07.081. Google Scholar

[29]

G. Grubb, Regularity of spectral fractional Dirichlet and Neumann problems, Math. Nachr., 289 (2016), 831-844. doi: 10.1002/mana.201500041. Google Scholar

[30]

G. Grubb, Integration by parts and Pohozaev identities for space-dependent fractional-order operators, J. Diff. Eq., 261 (2016), 1835-1879. doi: 10.1016/j.jde.2016.04.017. Google Scholar

[31]

G. Grubb, Regularity in Lp Sobolev spaces of solutions to fractional heat equations, J. Funct. Anal., 274 (2018), 2634-2660. doi: 10.1016/j.jfa.2017.12.011. Google Scholar

[32]

G. Grubb, Green's formula and a Dirichlet-to-Neumann operator for fractional-order pseudodifferential operators, Comm. Part. Diff. Equ., 43 (2018), 750–789, arXiv: 1611.03024, https://www.tandfonline.com/doi/full/10.1080/03605302.2018.1475487. doi: 10.1080/03605302.2018.1475487. Google Scholar

[33]

G. Grubb, Fractional-order operators: Boundary problems, heat equations, in Mathematical Analysis and Applications –- Plenary Lectures, ISAAC 2017, Vaxjo Sweden, Springer Proceedings in Mathematics and Statistics, (L. G. Rodino and J. Toft, eds.), Springer, Switzerland, 2018, pp. 51–81.Google Scholar

[34]

W. Hoh and N. Jacob, On the Dirichlet problem for pseudodifferential operators generating Feller semigroups, J. Functional Anal., 137 (1996), 19-48. doi: 10.1006/jfan.1996.0039. Google Scholar

[35]

L. Hörmander, Seminar notes on pseudo-differential operators and boundary problems, Lectures at IAS Princeton 1965-66, available from Lund University, https://lup.lub.lu.se/search/.Google Scholar

[36]

L. Hörmander, The Analysis of Linear Partial Differential Operators, III, Springer Verlag, Berlin, 1985. Google Scholar

[37]

N. Jacob, Pseudo Differential Operators and Markov Processes, Vol. I–3, Imperial College Press, London, 2001. doi: 10.1142/9781860949746. Google Scholar

[38]

T. Jakubowski, The estimates for the Green function in Lipschitz domains for the symmetric stable processes, Probab. Math. Statist., 22 (2002), 419-441. Google Scholar

[39]

T. Jin and J. Xiong, Schauder estimates for solutions of linear parabolic integro-differential equations, Discrete Contin. Dyn. Syst., 35 (2015), 5977-5998. doi: 10.3934/dcds.2015.35.5977. Google Scholar

[40]

J. Johnsen, Elliptic boundary problems and the Boutet de Monvel calculus in Besov and Triebel-Lizorkin spaces, Math. Scand., 79 (1996), 25-85. doi: 10.7146/math.scand.a-12593. Google Scholar

[41]

T. Kulczycki, Properties of Green function of symmetric stable processes, Probab. Math. Statist., 17 (1997), 339-364. Google Scholar

[42]

N. S. Landkof, Foundations of Modern Potential Theory, Die Grundlehren der mathematischen Wissenschaften, Band 180, (Translated from the Russian by A. P. Doohovskoy.), Springer-Verlag, New York-Heidelberg, 1972. Google Scholar

[43]

T. LeonoriI. PeralA. Primo and F. Soria, Basic estimates for solutions of a class of nonlocal elliptic and parabolic equations, Discrete Contin. Dyn. Syst., 35 (2015), 6031-6068. doi: 10.3934/dcds.2015.35.6031. Google Scholar

[44]

R. Musina and A. I. Nazarov, On fractional Laplacians, Comm. Part. Diff. Eq., 39 (2014), 1780-1790. doi: 10.1080/03605302.2013.864304. Google Scholar

[45]

X. Ros-Oton, Nonlocal elliptic equations in bounded domains: A survey, Publ. Mat., 60 (2016), 3-26. Google Scholar

[46]

X. Ros-Oton, Boundary regularity, Pohozaev identities and nonexistence results, Recent Developments in Nonlocal Theory, De Gruyter, Berlin, 2018, pp. 335–358. Google Scholar

[47]

X. Ros-Oton and J. Serra, The Dirichlet problem for the fractional Laplacian: Regularity up to the boundary, J. Math. Pures Appl., 101 (2014), 275-302. doi: 10.1016/j.matpur.2013.06.003. Google Scholar

[48]

X. Ros-Oton and J. Serra, The Pohozaev identity for the fractional Laplacian, Arch. Rat. Mech. Anal., 213 (2014), 587-628. doi: 10.1007/s00205-014-0740-2. Google Scholar

[49]

X. Ros-Oton and J. Serra, Regularity theory for general stable operators, J. Differential Equations, 260 (2016), 8675-8715. doi: 10.1016/j.jde.2016.02.033. Google Scholar

[50]

X. Ros-Oton and H. Vivas, Higher-order boundary regularity estimates for nonlocal parabolic equations, Calc. Var. Partial Differential Equations, 57 (2018), Art. 111, 20 pp. doi: 10.1007/s00526-018-1399-6. Google Scholar

[51]

R. Servadei and E. Valdinoci, On the spectrum of two different fractional operators, Proc. Roy. Soc. Edinburgh, 144 (2014), 831-855. doi: 10.1017/S0308210512001783. Google Scholar

[52]

L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, Comm. Pure Appl. Math., 60 (2007), 67-112. doi: 10.1002/cpa.20153. Google Scholar

[53] M. E. Taylor, Pseudodifferential Operators, Princeton University Press, Princeton, NJ, 1981. Google Scholar

show all references

References:
[1]

N. Abatangelo, Large s-harmonic functions and boundary blow-up solutions for the fractional Laplacian, Discrete Contin. Dyn. Syst., 35 (2015), 5555-5607. doi: 10.3934/dcds.2015.35.5555. Google Scholar

[2]

N. Abatangelo, S. Dipierro, M. M. Fall, S. Jarohs and A. Saldana, Positive powers of the Laplacian in the half-space under Dirichlet boundary conditions, arXiv: 1806.05128.Google Scholar

[3]

N. Abatangelo, S. Jarohs and A. Saldana, Integral representation of solutions to higher-order fractional Dirichlet problems on balls, Comm. Contemp. Math., 20 (2018), 1850002, 36 pp, arXiv: 1707.03603. doi: 10.1142/S0219199718500025. Google Scholar

[4]

H. Amann, Operator-valued Fourier multipliers, vector-valued Besov spaces, and applications, Math. Nachr., 186 (1997), 5-56. doi: 10.1002/mana.3211860102. Google Scholar

[5]

U. Biccari, M. Warma and E. Zuazua, Local regularity for fractional heat equations, arXiv: 1704.07562.Google Scholar

[6]

B. M. Blumenthal and R. K. Getoor, The asymptotic distribution of the eigenvalues for a class of Markov operators, Pacific J. Math., 9 (1959), 399-408. Google Scholar

[7]

K. BogdanK. Burdzy and Z.-Q. Chen, Censored stable processes, Prob. Theory Related Fields, 127 (2003), 89-152. doi: 10.1007/s00440-003-0275-1. Google Scholar

[8]

M. BonforteY. Sire and J. L. Vazquez, Existence, uniqueness and asymptotic behaviour for fractional porous medium equations on bounded domains, Discrete Contin. Dyn. Syst., 35 (2015), 5725-5767. doi: 10.3934/dcds.2015.35.5725. Google Scholar

[9]

L. Boutet de Monvel, Boundary problems for pseudo-differential operators, Acta Math., 126 (1971), 11-51. doi: 10.1007/BF02392024. Google Scholar

[10]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Part. Diff. Eq., 32 (2007), 1245-1260. doi: 10.1080/03605300600987306. Google Scholar

[11]

H. Chang-Lara and G. Davila, Regularity for solutions of non local parabolic equations, Calc. Var. Part. Diff. Equations, 49 (2014), 139-172. doi: 10.1007/s00526-012-0576-2. Google Scholar

[12]

Z.-Q. Chen and R. Song, Estimates on Green functions and Poisson kernels for symmetric stable processes, Math. Ann., 312 (1998), 465-501. doi: 10.1007/s002080050232. Google Scholar

[13]

R. Cont and P. Tankov, Financial Modelling with Jump Processes, Financial Mathematics Series, Chapman & Hall/CRC, Boca Raton, FL, 2004. Google Scholar

[14]

R. Courant and D. Hilbert, Methods of Mathematical Physics II, Interscience Publishers, New York, 1962.Google Scholar

[15]

J. I. Diaz, D. Gomez-Castro and J. L. Vazquez, The fractional Schrödinger equation with general nonnegative potentials, The weighted space approach, arXiv: 1804.08398.Google Scholar

[16]

M. M. Fall, Regularity estimates for nonlocal Schrödinger equations, arXiv: 1711.02206.Google Scholar

[17]

M. Felsinger and M. Kassmann, Local regularity for parabolic nonlocal operators, Comm. Part. Diff. Equations, 38 (2013), 1539-1573. doi: 10.1080/03605302.2013.808211. Google Scholar

[18]

M. FelsingerM. Kassmann and P. Voigt, The Dirichlet problem for nonlocal operators, Math. Z., 279 (2015), 779-809. doi: 10.1007/s00209-014-1394-3. Google Scholar

[19]

X. Fernandez-Real and X. Ros-Oton, Regularity theory for general stable operators: Parabolic equations, J. Funct. Anal., 272 (2017), 4165-4221. doi: 10.1016/j.jfa.2017.02.015. Google Scholar

[20]

R. Frank and L. Geisinger, Refined semiclassical asymptotics for fractional powers of the Laplace operator, J. Reine Angew. Math., 712 (2016), 1-37. doi: 10.1515/crelle-2013-0120. Google Scholar

[21]

T. Ghosh, M. Salo and G. Uhlmann, The Calderón problem for the fractional Schrödinger equation, arXiv: 1609.09248.Google Scholar

[22]

M. GonzalezR. Mazzeo and Y. Sire, Singular solutions of fractional order conformal Laplacians, J. Geom. Anal., 22 (2012), 845-863. doi: 10.1007/s12220-011-9217-9. Google Scholar

[23]

G. Grubb, Pseudo-differential boundary problems in Lp spaces, Comm. Part. Diff. Eq., 15 (1990), 289-340. doi: 10.1080/03605309908820688. Google Scholar

[24]

G. Grubb, Functional Calculus of Pseudodifferential Boundary Problems, Progress in Math. vol. 65, Second Edition, Birkhäuser, Boston, 1996. doi: 10.1007/978-1-4612-0769-6. Google Scholar

[25]

G. Grubb, Distributions and Operators. Graduate Texts in Mathematics, 252, Springer, New York, 2009. Google Scholar

[26]

G. Grubb, Local and nonlocal boundary conditions for µ-transmission and fractional elliptic pseudodifferential operators, Analysis and P.D.E., 7 (2014), 1649-1682. doi: 10.2140/apde.2014.7.1649. Google Scholar

[27]

G. Grubb, Fractional Laplacians on domains, a development of Hörmander's theory of µ-transmission pseudodifferential operators, Adv. Math., 268 (2015), 478-528. doi: 10.1016/j.aim.2014.09.018. Google Scholar

[28]

G. Grubb, Spectral results for mixed problems and fractional elliptic operators, J. Math. Anal. Appl., 421 (2015), 1616-1634. doi: 10.1016/j.jmaa.2014.07.081. Google Scholar

[29]

G. Grubb, Regularity of spectral fractional Dirichlet and Neumann problems, Math. Nachr., 289 (2016), 831-844. doi: 10.1002/mana.201500041. Google Scholar

[30]

G. Grubb, Integration by parts and Pohozaev identities for space-dependent fractional-order operators, J. Diff. Eq., 261 (2016), 1835-1879. doi: 10.1016/j.jde.2016.04.017. Google Scholar

[31]

G. Grubb, Regularity in Lp Sobolev spaces of solutions to fractional heat equations, J. Funct. Anal., 274 (2018), 2634-2660. doi: 10.1016/j.jfa.2017.12.011. Google Scholar

[32]

G. Grubb, Green's formula and a Dirichlet-to-Neumann operator for fractional-order pseudodifferential operators, Comm. Part. Diff. Equ., 43 (2018), 750–789, arXiv: 1611.03024, https://www.tandfonline.com/doi/full/10.1080/03605302.2018.1475487. doi: 10.1080/03605302.2018.1475487. Google Scholar

[33]

G. Grubb, Fractional-order operators: Boundary problems, heat equations, in Mathematical Analysis and Applications –- Plenary Lectures, ISAAC 2017, Vaxjo Sweden, Springer Proceedings in Mathematics and Statistics, (L. G. Rodino and J. Toft, eds.), Springer, Switzerland, 2018, pp. 51–81.Google Scholar

[34]

W. Hoh and N. Jacob, On the Dirichlet problem for pseudodifferential operators generating Feller semigroups, J. Functional Anal., 137 (1996), 19-48. doi: 10.1006/jfan.1996.0039. Google Scholar

[35]

L. Hörmander, Seminar notes on pseudo-differential operators and boundary problems, Lectures at IAS Princeton 1965-66, available from Lund University, https://lup.lub.lu.se/search/.Google Scholar

[36]

L. Hörmander, The Analysis of Linear Partial Differential Operators, III, Springer Verlag, Berlin, 1985. Google Scholar

[37]

N. Jacob, Pseudo Differential Operators and Markov Processes, Vol. I–3, Imperial College Press, London, 2001. doi: 10.1142/9781860949746. Google Scholar

[38]

T. Jakubowski, The estimates for the Green function in Lipschitz domains for the symmetric stable processes, Probab. Math. Statist., 22 (2002), 419-441. Google Scholar

[39]

T. Jin and J. Xiong, Schauder estimates for solutions of linear parabolic integro-differential equations, Discrete Contin. Dyn. Syst., 35 (2015), 5977-5998. doi: 10.3934/dcds.2015.35.5977. Google Scholar

[40]

J. Johnsen, Elliptic boundary problems and the Boutet de Monvel calculus in Besov and Triebel-Lizorkin spaces, Math. Scand., 79 (1996), 25-85. doi: 10.7146/math.scand.a-12593. Google Scholar

[41]

T. Kulczycki, Properties of Green function of symmetric stable processes, Probab. Math. Statist., 17 (1997), 339-364. Google Scholar

[42]

N. S. Landkof, Foundations of Modern Potential Theory, Die Grundlehren der mathematischen Wissenschaften, Band 180, (Translated from the Russian by A. P. Doohovskoy.), Springer-Verlag, New York-Heidelberg, 1972. Google Scholar

[43]

T. LeonoriI. PeralA. Primo and F. Soria, Basic estimates for solutions of a class of nonlocal elliptic and parabolic equations, Discrete Contin. Dyn. Syst., 35 (2015), 6031-6068. doi: 10.3934/dcds.2015.35.6031. Google Scholar

[44]

R. Musina and A. I. Nazarov, On fractional Laplacians, Comm. Part. Diff. Eq., 39 (2014), 1780-1790. doi: 10.1080/03605302.2013.864304. Google Scholar

[45]

X. Ros-Oton, Nonlocal elliptic equations in bounded domains: A survey, Publ. Mat., 60 (2016), 3-26. Google Scholar

[46]

X. Ros-Oton, Boundary regularity, Pohozaev identities and nonexistence results, Recent Developments in Nonlocal Theory, De Gruyter, Berlin, 2018, pp. 335–358. Google Scholar

[47]

X. Ros-Oton and J. Serra, The Dirichlet problem for the fractional Laplacian: Regularity up to the boundary, J. Math. Pures Appl., 101 (2014), 275-302. doi: 10.1016/j.matpur.2013.06.003. Google Scholar

[48]

X. Ros-Oton and J. Serra, The Pohozaev identity for the fractional Laplacian, Arch. Rat. Mech. Anal., 213 (2014), 587-628. doi: 10.1007/s00205-014-0740-2. Google Scholar

[49]

X. Ros-Oton and J. Serra, Regularity theory for general stable operators, J. Differential Equations, 260 (2016), 8675-8715. doi: 10.1016/j.jde.2016.02.033. Google Scholar

[50]

X. Ros-Oton and H. Vivas, Higher-order boundary regularity estimates for nonlocal parabolic equations, Calc. Var. Partial Differential Equations, 57 (2018), Art. 111, 20 pp. doi: 10.1007/s00526-018-1399-6. Google Scholar

[51]

R. Servadei and E. Valdinoci, On the spectrum of two different fractional operators, Proc. Roy. Soc. Edinburgh, 144 (2014), 831-855. doi: 10.1017/S0308210512001783. Google Scholar

[52]

L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, Comm. Pure Appl. Math., 60 (2007), 67-112. doi: 10.1002/cpa.20153. Google Scholar

[53] M. E. Taylor, Pseudodifferential Operators, Princeton University Press, Princeton, NJ, 1981. Google Scholar
[1]

Selma Yildirim Yolcu, Türkay Yolcu. Sharper estimates on the eigenvalues of Dirichlet fractional Laplacian. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 2209-2225. doi: 10.3934/dcds.2015.35.2209

[2]

Carlos Lizama, Luz Roncal. Hölder-Lebesgue regularity and almost periodicity for semidiscrete equations with a fractional Laplacian. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1365-1403. doi: 10.3934/dcds.2018056

[3]

Atsushi Kawamoto. Hölder stability estimate in an inverse source problem for a first and half order time fractional diffusion equation. Inverse Problems & Imaging, 2018, 12 (2) : 315-330. doi: 10.3934/ipi.2018014

[4]

Tomás Sanz-Perela. Regularity of radial stable solutions to semilinear elliptic equations for the fractional Laplacian. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2547-2575. doi: 10.3934/cpaa.2018121

[5]

Miaomiao Niu, Zhongwei Tang. Least energy solutions for nonlinear Schrödinger equation involving the fractional Laplacian and critical growth. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3963-3987. doi: 10.3934/dcds.2017168

[6]

Ran Zhuo, Yan Li. Nonexistence and symmetry of solutions for Schrödinger systems involving fractional Laplacian. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1595-1611. doi: 10.3934/dcds.2019071

[7]

Susanna Terracini, Gianmaria Verzini, Alessandro Zilio. Uniform Hölder regularity with small exponent in competition-fractional diffusion systems. Discrete & Continuous Dynamical Systems - A, 2014, 34 (6) : 2669-2691. doi: 10.3934/dcds.2014.34.2669

[8]

Chu-Hee Cho, Youngwoo Koh, Ihyeok Seo. On inhomogeneous Strichartz estimates for fractional Schrödinger equations and their applications. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 1905-1926. doi: 10.3934/dcds.2016.36.1905

[9]

Yalçin Sarol, Frederi Viens. Time regularity of the evolution solution to fractional stochastic heat equation. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 895-910. doi: 10.3934/dcdsb.2006.6.895

[10]

Vladimir Georgiev, Koichi Taniguchi. On fractional Leibniz rule for Dirichlet Laplacian in exterior domain. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 1101-1115. doi: 10.3934/dcds.2019046

[11]

Mikko Kemppainen, Peter Sjögren, José Luis Torrea. Wave extension problem for the fractional Laplacian. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 4905-4929. doi: 10.3934/dcds.2015.35.4905

[12]

De Tang, Yanqin Fang. Regularity and nonexistence of solutions for a system involving the fractional Laplacian. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2431-2451. doi: 10.3934/cpaa.2015.14.2431

[13]

Wulong Liu, Guowei Dai. Multiple solutions for a fractional nonlinear Schrödinger equation with local potential. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2105-2123. doi: 10.3934/cpaa.2017104

[14]

Xudong Shang, Jihui Zhang. Multiplicity and concentration of positive solutions for fractional nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2239-2259. doi: 10.3934/cpaa.2018107

[15]

Patricio Felmer, César Torres. Radial symmetry of ground states for a regional fractional Nonlinear Schrödinger Equation. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2395-2406. doi: 10.3934/cpaa.2014.13.2395

[16]

Zhengping Wang, Huan-Song Zhou. Radial sign-changing solution for fractional Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 499-508. doi: 10.3934/dcds.2016.36.499

[17]

Van Duong Dinh, Binhua Feng. On fractional nonlinear Schrödinger equation with combined power-type nonlinearities. Discrete & Continuous Dynamical Systems - A, 2019, 39 (8) : 4565-4612. doi: 10.3934/dcds.2019188

[18]

Mahamadi Warma. A fractional Dirichlet-to-Neumann operator on bounded Lipschitz domains. Communications on Pure & Applied Analysis, 2015, 14 (5) : 2043-2067. doi: 10.3934/cpaa.2015.14.2043

[19]

Rafael De La Llave, R. Obaya. Regularity of the composition operator in spaces of Hölder functions. Discrete & Continuous Dynamical Systems - A, 1999, 5 (1) : 157-184. doi: 10.3934/dcds.1999.5.157

[20]

Vincenzo Ambrosio, Teresa Isernia. Multiplicity and concentration results for some nonlinear Schrödinger equations with the fractional p-Laplacian. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5835-5881. doi: 10.3934/dcds.2018254

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (56)
  • HTML views (86)
  • Cited by (0)

Other articles
by authors

[Back to Top]