July  2019, 39(7): 3671-3716. doi: 10.3934/dcds.2019150

Generalized multi-hump wave solutions of Kdv-Kdv system of Boussinesq equations

1. 

School of Mathematical Sciences, Huaqiao University, Quanzhou, Fujian 362021, China

2. 

Department of Mathematics, lingnan Normal University, Zhanjiang, Guangdong 524048, China

Received  October 2017 Published  April 2019

The KdV-KdV system of Boussinesq equations belongs to the class of Boussinesq equations modeling two-way propagation of small-amplitude long waves on the surface of an ideal fluid. It has been numerically shown that this system possesses solutions with two humps which tend to a periodic solution with much smaller amplitude at infinity (called generalized two-hump wave solutions). This paper presents the first rigorous proof. The traveling form of this system can be formulated into a dynamical system with dimension 4. The classical dynamical system approach provides the existence of a solution with an exponentially decaying part and an oscillatory part (small-amplitude periodic solution) at positive infinity, which has a single hump at the origin and is reversible near negative infinity if some free constants, such as the amplitude and the phase shit of the periodic solution, are activated. This eventually yields a generalized two-hump wave solution. The method here can be applied to obtain generalized $2^k$-hump wave solutions for any positive integer $k$.

Citation: Shengfu Deng. Generalized multi-hump wave solutions of Kdv-Kdv system of Boussinesq equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (7) : 3671-3716. doi: 10.3934/dcds.2019150
References:
[1]

A. Ali and H. Kalisch, Mechanical balance laws for Boussinesq models of surface water waves, J. Nonlinear Sci., 22 (2012), 371-398.  doi: 10.1007/s00332-011-9121-2.  Google Scholar

[2]

D. C. AntonopoulosV. A. Dougalis and D. E. Mitsotakis, Numerical solution of Boussinesq systems of the Bona-Smith family, Appl. Numer. Math., 60 (2010), 633-669.  doi: 10.1016/j.apnum.2009.03.002.  Google Scholar

[3]

J. L. BonaM. Chen and J.-C. Saut, Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media. Ⅰ. Derivation and linear theory, J. Nonlinear Sci., 12 (2002), 283-318.  doi: 10.1007/s00332-002-0466-4.  Google Scholar

[4]

J. L. BonaM. Chen and J.-C. Saut, Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media. Ⅱ. The nonlinear theory, Nonlinearity, 17 (2004), 925-952.  doi: 10.1088/0951-7715/17/3/010.  Google Scholar

[5]

J. L. BonaV. A. Dougalis and D. Mitsotakis, Numerical solution of the KdV-KdV systems of Boussinesq equations Ⅰ. Numerical schemes and generalized solitary waves, Math. Comput. Simulation, 74 (2007), 214-228.  doi: 10.1016/j.matcom.2006.10.004.  Google Scholar

[6]

J. L. BonaV. A. Dougalis and D. Mitsotakis, Numerical solution of Boussinesq systems of KdV-KdV type. Ⅱ. Evolution of radiating solitary waves, Nonlinearity, 21 (2008), 2825-2848.  doi: 10.1088/0951-7715/21/12/006.  Google Scholar

[7]

J. L. BonaZ. Grujić and H. Kalisch, A KdV-type Boussinesq system: From the energy level to analytic spaces, Discrete Contin. Dyn. Syst., 26 (2010), 1121-1139.  doi: 10.3934/dcds.2010.26.1121.  Google Scholar

[8]

M. Chen, Exact traveling-wave solutions to bi-directional wave equations, Int. J. Theor. Phys., 37 (1998), 1547-1567.  doi: 10.1023/A:1026667903256.  Google Scholar

[9]

J. W. ChoiD. S. LeeS. H. OhS. M. Sun and S. I. Whang, Multi-hump solutions of some singularly perturbed equations of KdV type, Discrete Contin. Dyn. Syst., 34 (2014), 5181-5209.  doi: 10.3934/dcds.2014.34.5181.  Google Scholar

[10]

S. Deng and S. M. Sun, Multi-hump solutions with small oscillations at infinity for stationary Swift-Hohenberg equation, Nonlinearity, 30 (2017), 765-809.  doi: 10.1088/1361-6544/aa525a.  Google Scholar

[11]

V. A. Dougalis and D. E. Mitsotakis, Theory and numerical analysis of Boussinesq systems: A review, in: N. A. Kampanis, V. A. Dougalis and J. A. Ekaterinaris (eds.), Effective Computational Methods in Wave Propagation, CRC Press, 5 (2008), 63–110. doi: 10.1201/9781420010879.ch3.  Google Scholar

[12]

B. Karasozen and G. Simsek, Energy preserving integration of KdV-KdV systems, TWMS J. App. Eng. Math., 2 (2012), 219-227.   Google Scholar

[13]

A. Khare and A. Saxena, Novel PT-invariant solutions for a large number of real nonlinear equations, Phys. Lett. A, 380 (2015), 856-862.  doi: 10.1016/j.physleta.2015.12.007.  Google Scholar

[14]

H. Kielhöfer, Bifurcation Theory: An Introduction with Applications to PDEs, Springer-Verlag, Berlin, 2003. Google Scholar

[15]

M. O. Korpusov, Blowup of solutions of nonlinear equations and systems of nonlinear equations in wave theory, Theoret. and Math. Phys., 174 (2013), 307-314.  doi: 10.1007/s11232-013-0028-y.  Google Scholar

[16]

F. LinaresD. Pilod and J.-C. Saut, Well-posedness of strongly dispersive two-dimensional surface wave Boussinesq systems, SIAM J. Math. Anal., 44 (2012), 4195-4221.  doi: 10.1137/110828277.  Google Scholar

[17]

E. Lombardi, Oscillatory Integrals and Phenomena Beyond all Algebraic Orders, with Applications to Homoclinic Orbits in Reversible Systems, Lecture Notes in Mathematics, Vol. 1741, Springer-Verlag, Berlin, 2000. doi: 10.1007/BFb0104102.  Google Scholar

[18]

A. MielkeP. Holmes and O. O'Reilly, Cascades of homoclinic orbits to, and chaos near, a Hamiltonian saddle-center, J. Dynam. Differ. Equ., 4 (1992), 95-126.  doi: 10.1007/BF01048157.  Google Scholar

[19]

M. MingJ.-C. Saut and P. Zhang, Long-time existence of solutions to Boussinesq systems, SIAM J. Math. Anal., 44 (2012), 4078-4100.  doi: 10.1137/110834214.  Google Scholar

[20]

T. E. MogorosiB. Muatjetjeja and C. M. Khalique, Conservation laws for a generalized coupled Boussinesq system of KdV-KdV type, Springer International Publishing, 117 (2015), 315-321.   Google Scholar

[21]

H. Y. Nguyen and F. Dias, A Boussinesq system for two-way propagation of interfacial waves, Phys. D, 237 (2008), 2365-2389.  doi: 10.1016/j.physd.2008.02.020.  Google Scholar

[22]

J.-C. SautC. Wang and L. Xu, The Cauchy problem on large time for surface waves type Boussinesq systems Ⅱ, SIAM J. Math. Anal., 49 (2017), 2321-2386.  doi: 10.1137/15M1050203.  Google Scholar

[23]

J.-C. Saut and L. Xu, The Cauchy problem on large time for surface waves Boussinesq systems, J. Math. Pures Appl., 97 (2012), 635-662.  doi: 10.1016/j.matpur.2011.09.012.  Google Scholar

[24]

E. V. Yushkov, Blowup in Korteweg-de Vries-type systems, Theoret. Math. Phys., 173 (2012), 197-206.  doi: 10.1007/s11232-012-0129-z.  Google Scholar

[25]

V. C. Zelati and M. Macrì, Multibump solutions homoclinic to periodic orbits of large energy in a centre manifold, Nonlinearity, 18 (2005), 2409-2445.  doi: 10.1088/0951-7715/18/6/001.  Google Scholar

[26]

Y. ZhouM. Wang and Y. Wang, Periodic wave solutions to coupled KdV equations with variable coefficients, Phys. Lett. A, 308 (2003), 31-36.  doi: 10.1016/S0375-9601(02)01775-9.  Google Scholar

show all references

References:
[1]

A. Ali and H. Kalisch, Mechanical balance laws for Boussinesq models of surface water waves, J. Nonlinear Sci., 22 (2012), 371-398.  doi: 10.1007/s00332-011-9121-2.  Google Scholar

[2]

D. C. AntonopoulosV. A. Dougalis and D. E. Mitsotakis, Numerical solution of Boussinesq systems of the Bona-Smith family, Appl. Numer. Math., 60 (2010), 633-669.  doi: 10.1016/j.apnum.2009.03.002.  Google Scholar

[3]

J. L. BonaM. Chen and J.-C. Saut, Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media. Ⅰ. Derivation and linear theory, J. Nonlinear Sci., 12 (2002), 283-318.  doi: 10.1007/s00332-002-0466-4.  Google Scholar

[4]

J. L. BonaM. Chen and J.-C. Saut, Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media. Ⅱ. The nonlinear theory, Nonlinearity, 17 (2004), 925-952.  doi: 10.1088/0951-7715/17/3/010.  Google Scholar

[5]

J. L. BonaV. A. Dougalis and D. Mitsotakis, Numerical solution of the KdV-KdV systems of Boussinesq equations Ⅰ. Numerical schemes and generalized solitary waves, Math. Comput. Simulation, 74 (2007), 214-228.  doi: 10.1016/j.matcom.2006.10.004.  Google Scholar

[6]

J. L. BonaV. A. Dougalis and D. Mitsotakis, Numerical solution of Boussinesq systems of KdV-KdV type. Ⅱ. Evolution of radiating solitary waves, Nonlinearity, 21 (2008), 2825-2848.  doi: 10.1088/0951-7715/21/12/006.  Google Scholar

[7]

J. L. BonaZ. Grujić and H. Kalisch, A KdV-type Boussinesq system: From the energy level to analytic spaces, Discrete Contin. Dyn. Syst., 26 (2010), 1121-1139.  doi: 10.3934/dcds.2010.26.1121.  Google Scholar

[8]

M. Chen, Exact traveling-wave solutions to bi-directional wave equations, Int. J. Theor. Phys., 37 (1998), 1547-1567.  doi: 10.1023/A:1026667903256.  Google Scholar

[9]

J. W. ChoiD. S. LeeS. H. OhS. M. Sun and S. I. Whang, Multi-hump solutions of some singularly perturbed equations of KdV type, Discrete Contin. Dyn. Syst., 34 (2014), 5181-5209.  doi: 10.3934/dcds.2014.34.5181.  Google Scholar

[10]

S. Deng and S. M. Sun, Multi-hump solutions with small oscillations at infinity for stationary Swift-Hohenberg equation, Nonlinearity, 30 (2017), 765-809.  doi: 10.1088/1361-6544/aa525a.  Google Scholar

[11]

V. A. Dougalis and D. E. Mitsotakis, Theory and numerical analysis of Boussinesq systems: A review, in: N. A. Kampanis, V. A. Dougalis and J. A. Ekaterinaris (eds.), Effective Computational Methods in Wave Propagation, CRC Press, 5 (2008), 63–110. doi: 10.1201/9781420010879.ch3.  Google Scholar

[12]

B. Karasozen and G. Simsek, Energy preserving integration of KdV-KdV systems, TWMS J. App. Eng. Math., 2 (2012), 219-227.   Google Scholar

[13]

A. Khare and A. Saxena, Novel PT-invariant solutions for a large number of real nonlinear equations, Phys. Lett. A, 380 (2015), 856-862.  doi: 10.1016/j.physleta.2015.12.007.  Google Scholar

[14]

H. Kielhöfer, Bifurcation Theory: An Introduction with Applications to PDEs, Springer-Verlag, Berlin, 2003. Google Scholar

[15]

M. O. Korpusov, Blowup of solutions of nonlinear equations and systems of nonlinear equations in wave theory, Theoret. and Math. Phys., 174 (2013), 307-314.  doi: 10.1007/s11232-013-0028-y.  Google Scholar

[16]

F. LinaresD. Pilod and J.-C. Saut, Well-posedness of strongly dispersive two-dimensional surface wave Boussinesq systems, SIAM J. Math. Anal., 44 (2012), 4195-4221.  doi: 10.1137/110828277.  Google Scholar

[17]

E. Lombardi, Oscillatory Integrals and Phenomena Beyond all Algebraic Orders, with Applications to Homoclinic Orbits in Reversible Systems, Lecture Notes in Mathematics, Vol. 1741, Springer-Verlag, Berlin, 2000. doi: 10.1007/BFb0104102.  Google Scholar

[18]

A. MielkeP. Holmes and O. O'Reilly, Cascades of homoclinic orbits to, and chaos near, a Hamiltonian saddle-center, J. Dynam. Differ. Equ., 4 (1992), 95-126.  doi: 10.1007/BF01048157.  Google Scholar

[19]

M. MingJ.-C. Saut and P. Zhang, Long-time existence of solutions to Boussinesq systems, SIAM J. Math. Anal., 44 (2012), 4078-4100.  doi: 10.1137/110834214.  Google Scholar

[20]

T. E. MogorosiB. Muatjetjeja and C. M. Khalique, Conservation laws for a generalized coupled Boussinesq system of KdV-KdV type, Springer International Publishing, 117 (2015), 315-321.   Google Scholar

[21]

H. Y. Nguyen and F. Dias, A Boussinesq system for two-way propagation of interfacial waves, Phys. D, 237 (2008), 2365-2389.  doi: 10.1016/j.physd.2008.02.020.  Google Scholar

[22]

J.-C. SautC. Wang and L. Xu, The Cauchy problem on large time for surface waves type Boussinesq systems Ⅱ, SIAM J. Math. Anal., 49 (2017), 2321-2386.  doi: 10.1137/15M1050203.  Google Scholar

[23]

J.-C. Saut and L. Xu, The Cauchy problem on large time for surface waves Boussinesq systems, J. Math. Pures Appl., 97 (2012), 635-662.  doi: 10.1016/j.matpur.2011.09.012.  Google Scholar

[24]

E. V. Yushkov, Blowup in Korteweg-de Vries-type systems, Theoret. Math. Phys., 173 (2012), 197-206.  doi: 10.1007/s11232-012-0129-z.  Google Scholar

[25]

V. C. Zelati and M. Macrì, Multibump solutions homoclinic to periodic orbits of large energy in a centre manifold, Nonlinearity, 18 (2005), 2409-2445.  doi: 10.1088/0951-7715/18/6/001.  Google Scholar

[26]

Y. ZhouM. Wang and Y. Wang, Periodic wave solutions to coupled KdV equations with variable coefficients, Phys. Lett. A, 308 (2003), 31-36.  doi: 10.1016/S0375-9601(02)01775-9.  Google Scholar

Figure 1.  (1) Homoclinic solutions. (2) Generalized homoclinic solutions
Figure 2.  Generalized two-hump homoclinic solutions
Figure 3.  Eigenvalues of $ L $
[1]

Sishu Shankar Muni, Robert I. McLachlan, David J. W. Simpson. Homoclinic tangencies with infinitely many asymptotically stable single-round periodic solutions. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021010

[2]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[3]

Rong Chen, Shihang Pan, Baoshuai Zhang. Global conservative solutions for a modified periodic coupled Camassa-Holm system. Electronic Research Archive, 2021, 29 (1) : 1691-1708. doi: 10.3934/era.2020087

[4]

Tianwen Luo, Tao Tao, Liqun Zhang. Finite energy weak solutions of 2d Boussinesq equations with diffusive temperature. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3737-3765. doi: 10.3934/dcds.2019230

[5]

Mengyu Cheng, Zhenxin Liu. Periodic, almost periodic and almost automorphic solutions for SPDEs with monotone coefficients. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021026

[6]

Michal Fečkan, Kui Liu, JinRong Wang. $ (\omega,\mathbb{T}) $-periodic solutions of impulsive evolution equations. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021006

[7]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[8]

Dong-Ho Tsai, Chia-Hsing Nien. On space-time periodic solutions of the one-dimensional heat equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3997-4017. doi: 10.3934/dcds.2020037

[9]

Yi Guan, Michal Fečkan, Jinrong Wang. Periodic solutions and Hyers-Ulam stability of atmospheric Ekman flows. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1157-1176. doi: 10.3934/dcds.2020313

[10]

Hongyu Cheng, Shimin Wang. Response solutions to harmonic oscillators beyond multi–dimensional brjuno frequency. Communications on Pure & Applied Analysis, 2021, 20 (2) : 467-494. doi: 10.3934/cpaa.2020222

[11]

Craig Cowan, Abdolrahman Razani. Singular solutions of a Lane-Emden system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 621-656. doi: 10.3934/dcds.2020291

[12]

Chueh-Hsin Chang, Chiun-Chuan Chen, Chih-Chiang Huang. Traveling wave solutions of a free boundary problem with latent heat effect. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021028

[13]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[14]

José Luiz Boldrini, Jonathan Bravo-Olivares, Eduardo Notte-Cuello, Marko A. Rojas-Medar. Asymptotic behavior of weak and strong solutions of the magnetohydrodynamic equations. Electronic Research Archive, 2021, 29 (1) : 1783-1801. doi: 10.3934/era.2020091

[15]

Pierre Baras. A generalization of a criterion for the existence of solutions to semilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 465-504. doi: 10.3934/dcdss.2020439

[16]

Tadahiro Oh, Yuzhao Wang. On global well-posedness of the modified KdV equation in modulation spaces. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2020393

[17]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[18]

Shin-Ichiro Ei, Shyuh-Yaur Tzeng. Spike solutions for a mass conservation reaction-diffusion system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3357-3374. doi: 10.3934/dcds.2020049

[19]

Xiaoping Zhai, Yongsheng Li. Global large solutions and optimal time-decay estimates to the Korteweg system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1387-1413. doi: 10.3934/dcds.2020322

[20]

Riadh Chteoui, Abdulrahman F. Aljohani, Anouar Ben Mabrouk. Classification and simulation of chaotic behaviour of the solutions of a mixed nonlinear Schrödinger system. Electronic Research Archive, , () : -. doi: 10.3934/era.2021002

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (163)
  • HTML views (209)
  • Cited by (1)

Other articles
by authors

[Back to Top]