• Previous Article
    Initial boundary value problems for a system of parabolic conservation laws arising from chemotaxis in multi-dimensions
  • DCDS Home
  • This Issue
  • Next Article
    Large-time regular solutions to the modified quasi-geostrophic equation in Besov spaces
July  2019, 39(7): 3767-3787. doi: 10.3934/dcds.2019153

Classification of linear skew-products of the complex plane and an affine route to fractalization

Departament de Matemàtiques i Informàtica, Barcelona Graduate School of Mathematics (BGSMath), Universitat de Barcelona (UB), Gran Via de les Corts Catalanes 585, 08007 Barcelona, Spain

Received  February 2018 Revised  November 2018 Published  April 2019

Fund Project: Work supported by the Maria de Maeztu Excellence Grant MDM-2014-0445 and the grant 2017 SGR 1374. N. Fagella has been partially supported by the grants MTM2014-52209-C2-2-P and MTM2017-86795-C3-3-P, A. Jorba, M. Jorba-Cuscó and J.C. Tatjer have been supported by the grant MTM2015-67724-P.

Linear skew products of the complex plane,
$ \left. \begin{array}{rcl} \theta & \mapsto & \theta+\omega,\\ z & \mapsto & a(\theta)z, \end{array} \right\} $
where
$ \theta\in {\mathbb T} $
,
$ z\in {\mathbb C} $
,
$ \frac{\omega}{2\pi} $
is irrational, and
$ \theta\mapsto a(\theta) \in {\mathbb C}\setminus \{0\} $
is a smooth map, appear naturally when linearizing dynamics around an invariant curve of a quasi-periodically forced complex map. In this paper we study linear and topological equivalence classes of such maps through conjugacies which preserve the skewed structure, relating them to the Lyapunov exponent and the winding number of
$ \theta\mapsto a(\theta) $
. We analyze the transition between these classes by considering one parameter families of linear skew products. Finally, we show that, under suitable conditions, an affine variation of the maps above has a non-reducible invariant curve that undergoes a fractalization process when the parameter goes to a critical value. This phenomenon of fractalization of invariant curves is known to happen in nonlinear skew products, but it is remarkable that it also occurs in simple systems as the ones we present.
Citation: Núria Fagella, Àngel Jorba, Marc Jorba-Cuscó, Joan Carles Tatjer. Classification of linear skew-products of the complex plane and an affine route to fractalization. Discrete & Continuous Dynamical Systems - A, 2019, 39 (7) : 3767-3787. doi: 10.3934/dcds.2019153
References:
[1]

L. V. Ahlfors, Complex Analysis: An Introduction of the Theory of Analytic Functions of one Complex Variable, Second edition. McGraw-Hill Book Co., New York-Toronto-London, 1966.  Google Scholar

[2]

K. Bjerklöv, SNA's in the quasi-periodic quadratic family, Comm. Math. Phys., 286 (2009), 137-161.  doi: 10.1007/s00220-008-0626-y.  Google Scholar

[3]

J.-L. Figueras and À. Haro, Different scenarios for hyperbolicity breakdown in quasiperiodic area preserving twist maps, Chaos, 25 (2015), 123119, 16pp. doi: 10.1063/1.4938185.  Google Scholar

[4]

J.-L. Figueras and À. Haro, A note on the fractalization of saddle invariant curves in quasiperiodic systems, Discrete and Continuous Dynamical Systems - S, 9 (2016), 1095-1107.  doi: 10.3934/dcdss.2016043.  Google Scholar

[5]

J.-L. Figueras and T. O. Timoudas, Sharp $\frac{1}{2}$-Hölder continuity of the Lyapunov exponent at the bottom of the spectrum for a class of Schrödinger cocycles, Preprint, 2018. Google Scholar

[6]

G. FuhrmannM. Gröger and T. Jäger, Non-smooth saddle-node bifurcations Ⅱ: Dimensions of strange attractors, Ergodic Theory Dynam. Systems, 38 (2018), 2989-3011.  doi: 10.1017/etds.2017.4.  Google Scholar

[7]

G. Fuhrmann and J. Wang, Rectifiability of a class of invariant measures with one non-vanishing Lyapunov exponent, Discrete Contin. Dyn. Syst. Ser. A, 37 92017), 5747–5761. doi: 10.3934/dcds.2017249.  Google Scholar

[8]

P. Glendinning, Global attractors of pinched skew products, Dyn. Syst., 17 (2002), 287-294.  doi: 10.1080/14689360210160878.  Google Scholar

[9]

G. H. Hardy and J. E. Littlewood, Some problems of diophantine approximation, Acta Math., 37 (1914), 193-239.  doi: 10.1007/BF02401834.  Google Scholar

[10]

À. Haro and R. de la Llave, Manifolds on the verge of a hyperbolicity breakdown, Chaos, 16 (2006), 013120, 8pp. doi: 10.1063/1.2150947.  Google Scholar

[11]

À. Haro and C. Simó, To be or not to be a SNA: That is the question, Preprint, 2006. Google Scholar

[12]

T. H. Jäger, Quasiperiodically forced interval maps with negative Schwarzian derivative, Nonlinearity, 16 (2003), 1239-1255.  doi: 10.1088/0951-7715/16/4/303.  Google Scholar

[13]

T. H. Jäger, On the structure of strange non-chaotic attractors in pinched skew products, Ergodic Theory Dynam. Systems, 27 (2007), 493-510.  doi: 10.1017/S0143385706000745.  Google Scholar

[14]

À. JorbaC. NúñezR. Obaya and J. C. Tatjer, Old and new results on strange nonchaotic attractors, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 17 (2007), 3895-3928.  doi: 10.1142/S0218127407019780.  Google Scholar

[15]

À. Jorba, Numerical computation of the normal behaviour of invariant curves of $n$-dimensional maps, Nonlinearity, 14 (2001), 943-976.  doi: 10.1088/0951-7715/14/5/303.  Google Scholar

[16]

À. Jorba and J. C. Tatjer, A mechanism for the fractalization of invariant curves in quasi-periodically forced 1-D maps, Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), 537-567.  doi: 10.3934/dcdsb.2008.10.537.  Google Scholar

[17] A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, volume 54 of Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, 1995.  doi: 10.1017/CBO9780511809187.  Google Scholar
[18]

A. Ya. Khinchin, Continued Fractions, Dover Publications, Inc., Mineola, NY, russian edition, 1997. With a preface by B. V. Gnedenko, Reprint of the 1964 translation.  Google Scholar

[19]

S. Lang, Introduction to Diophantine Approximations, Springer-Verlag, New York, second edition, 1995. doi: 10.1007/978-1-4612-4220-8.  Google Scholar

[20]

L. Nirenberg, A proof of the Malgrange preparation theorem, In Proceedings of Liverpool Singularities–-Symposium, I (1969/70), pages 97–105. Lecture Notes in Mathematics, Vol. 192. Springer, Berlin, 1971.  Google Scholar

[21]

M. Ponce, Local dynamics for fibred holomorphic transformations, Nonlinearity, 20 (2007), 2939-2955.  doi: 10.1088/0951-7715/20/12/011.  Google Scholar

[22]

A. PrasadV. Mehra and R. Ramaskrishna, Strange nonchaotic attractors in the quasiperiodically forced logistic map, Phys. Rev. E, 57 (1998), 1576-1584.  doi: 10.1103/PhysRevE.57.1576.  Google Scholar

[23]

A. PrasadS. S. Negi and R. Ramaswamy, Strange nonchaotic attractors, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 11 (2001), 291-309.  doi: 10.1142/S0218127401002195.  Google Scholar

[24]

H. Rüssmann, On optimal estimates for the solutions of linear difference equations on the circle, Celestial Mech., 14 (1976), 33-37.  doi: 10.1007/BF01247129.  Google Scholar

[25]

J. Stark, Invariant graphs for forced systems, Phys. D, 109 (1997), 163-179.  doi: 10.1016/S0167-2789(97)00167-X.  Google Scholar

show all references

References:
[1]

L. V. Ahlfors, Complex Analysis: An Introduction of the Theory of Analytic Functions of one Complex Variable, Second edition. McGraw-Hill Book Co., New York-Toronto-London, 1966.  Google Scholar

[2]

K. Bjerklöv, SNA's in the quasi-periodic quadratic family, Comm. Math. Phys., 286 (2009), 137-161.  doi: 10.1007/s00220-008-0626-y.  Google Scholar

[3]

J.-L. Figueras and À. Haro, Different scenarios for hyperbolicity breakdown in quasiperiodic area preserving twist maps, Chaos, 25 (2015), 123119, 16pp. doi: 10.1063/1.4938185.  Google Scholar

[4]

J.-L. Figueras and À. Haro, A note on the fractalization of saddle invariant curves in quasiperiodic systems, Discrete and Continuous Dynamical Systems - S, 9 (2016), 1095-1107.  doi: 10.3934/dcdss.2016043.  Google Scholar

[5]

J.-L. Figueras and T. O. Timoudas, Sharp $\frac{1}{2}$-Hölder continuity of the Lyapunov exponent at the bottom of the spectrum for a class of Schrödinger cocycles, Preprint, 2018. Google Scholar

[6]

G. FuhrmannM. Gröger and T. Jäger, Non-smooth saddle-node bifurcations Ⅱ: Dimensions of strange attractors, Ergodic Theory Dynam. Systems, 38 (2018), 2989-3011.  doi: 10.1017/etds.2017.4.  Google Scholar

[7]

G. Fuhrmann and J. Wang, Rectifiability of a class of invariant measures with one non-vanishing Lyapunov exponent, Discrete Contin. Dyn. Syst. Ser. A, 37 92017), 5747–5761. doi: 10.3934/dcds.2017249.  Google Scholar

[8]

P. Glendinning, Global attractors of pinched skew products, Dyn. Syst., 17 (2002), 287-294.  doi: 10.1080/14689360210160878.  Google Scholar

[9]

G. H. Hardy and J. E. Littlewood, Some problems of diophantine approximation, Acta Math., 37 (1914), 193-239.  doi: 10.1007/BF02401834.  Google Scholar

[10]

À. Haro and R. de la Llave, Manifolds on the verge of a hyperbolicity breakdown, Chaos, 16 (2006), 013120, 8pp. doi: 10.1063/1.2150947.  Google Scholar

[11]

À. Haro and C. Simó, To be or not to be a SNA: That is the question, Preprint, 2006. Google Scholar

[12]

T. H. Jäger, Quasiperiodically forced interval maps with negative Schwarzian derivative, Nonlinearity, 16 (2003), 1239-1255.  doi: 10.1088/0951-7715/16/4/303.  Google Scholar

[13]

T. H. Jäger, On the structure of strange non-chaotic attractors in pinched skew products, Ergodic Theory Dynam. Systems, 27 (2007), 493-510.  doi: 10.1017/S0143385706000745.  Google Scholar

[14]

À. JorbaC. NúñezR. Obaya and J. C. Tatjer, Old and new results on strange nonchaotic attractors, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 17 (2007), 3895-3928.  doi: 10.1142/S0218127407019780.  Google Scholar

[15]

À. Jorba, Numerical computation of the normal behaviour of invariant curves of $n$-dimensional maps, Nonlinearity, 14 (2001), 943-976.  doi: 10.1088/0951-7715/14/5/303.  Google Scholar

[16]

À. Jorba and J. C. Tatjer, A mechanism for the fractalization of invariant curves in quasi-periodically forced 1-D maps, Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), 537-567.  doi: 10.3934/dcdsb.2008.10.537.  Google Scholar

[17] A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, volume 54 of Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, 1995.  doi: 10.1017/CBO9780511809187.  Google Scholar
[18]

A. Ya. Khinchin, Continued Fractions, Dover Publications, Inc., Mineola, NY, russian edition, 1997. With a preface by B. V. Gnedenko, Reprint of the 1964 translation.  Google Scholar

[19]

S. Lang, Introduction to Diophantine Approximations, Springer-Verlag, New York, second edition, 1995. doi: 10.1007/978-1-4612-4220-8.  Google Scholar

[20]

L. Nirenberg, A proof of the Malgrange preparation theorem, In Proceedings of Liverpool Singularities–-Symposium, I (1969/70), pages 97–105. Lecture Notes in Mathematics, Vol. 192. Springer, Berlin, 1971.  Google Scholar

[21]

M. Ponce, Local dynamics for fibred holomorphic transformations, Nonlinearity, 20 (2007), 2939-2955.  doi: 10.1088/0951-7715/20/12/011.  Google Scholar

[22]

A. PrasadV. Mehra and R. Ramaskrishna, Strange nonchaotic attractors in the quasiperiodically forced logistic map, Phys. Rev. E, 57 (1998), 1576-1584.  doi: 10.1103/PhysRevE.57.1576.  Google Scholar

[23]

A. PrasadS. S. Negi and R. Ramaswamy, Strange nonchaotic attractors, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 11 (2001), 291-309.  doi: 10.1142/S0218127401002195.  Google Scholar

[24]

H. Rüssmann, On optimal estimates for the solutions of linear difference equations on the circle, Celestial Mech., 14 (1976), 33-37.  doi: 10.1007/BF01247129.  Google Scholar

[25]

J. Stark, Invariant graphs for forced systems, Phys. D, 109 (1997), 163-179.  doi: 10.1016/S0167-2789(97)00167-X.  Google Scholar

Figure 1.  Invariant curve of (3) for c = 1. Plots for µ = 0:5, µ = 0:9, µ = 0:99 and µ = 0:999
Figure 2.  Asymptotic growth of the invariant curve of (3) w.r.t. $\mu$ when $\mu\nearrow 1$, for $c = 1$. The horizontal axis shows $1-\mu$ and the symbols "+'' denote the computed values. The dotted line is the fitting function. Top: On the left, fitting $\|z_{\mu}\|_{\infty}$ by $1.54(1-\mu)^{-1/2}$. On the right, fitting of $\|z_{\mu}'\|_{\infty}$ by $0.41(1-\mu)^{-3/2}$. Bottom: On the left, fitting of the length of $z_{\mu}$ by $3.1(1-\mu)^{-3/2}$. On the right, fitting of $(z_{\mu}, 0)$ by $0.5(1-\mu)^{-1}$
[1]

Yancong Xu, Lijun Wei, Xiaoyu Jiang, Zirui Zhu. Complex dynamics of a SIRS epidemic model with the influence of hospital bed number. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021016

[2]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[3]

Lars Grüne. Computing Lyapunov functions using deep neural networks. Journal of Computational Dynamics, 2020  doi: 10.3934/jcd.2021006

[4]

Peter Giesl, Sigurdur Hafstein. System specific triangulations for the construction of CPA Lyapunov functions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020378

[5]

Peter Giesl, Zachary Langhorne, Carlos Argáez, Sigurdur Hafstein. Computing complete Lyapunov functions for discrete-time dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 299-336. doi: 10.3934/dcdsb.2020331

[6]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[7]

Tian Ma, Shouhong Wang. Topological phase transition III: Solar surface eruptions and sunspots. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 501-514. doi: 10.3934/dcdsb.2020350

[8]

Claudio Bonanno, Marco Lenci. Pomeau-Manneville maps are global-local mixing. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1051-1069. doi: 10.3934/dcds.2020309

[9]

Álvaro Castañeda, Pablo González, Gonzalo Robledo. Topological Equivalence of nonautonomous difference equations with a family of dichotomies on the half line. Communications on Pure & Applied Analysis, 2021, 20 (2) : 511-532. doi: 10.3934/cpaa.2020278

[10]

Hua Shi, Xiang Zhang, Yuyan Zhang. Complex planar Hamiltonian systems: Linearization and dynamics. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020406

[11]

Riadh Chteoui, Abdulrahman F. Aljohani, Anouar Ben Mabrouk. Classification and simulation of chaotic behaviour of the solutions of a mixed nonlinear Schrödinger system. Electronic Research Archive, , () : -. doi: 10.3934/era.2021002

[12]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[13]

Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310

[14]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[15]

Yi-Long Luo, Yangjun Ma. Low Mach number limit for the compressible inertial Qian-Sheng model of liquid crystals: Convergence for classical solutions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 921-966. doi: 10.3934/dcds.2020304

[16]

Jann-Long Chern, Sze-Guang Yang, Zhi-You Chen, Chih-Her Chen. On the family of non-topological solutions for the elliptic system arising from a product Abelian gauge field theory. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3291-3304. doi: 10.3934/dcds.2020127

[17]

Juntao Sun, Tsung-fang Wu. The number of nodal solutions for the Schrödinger–Poisson system under the effect of the weight function. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021011

[18]

Kuo-Chih Hung, Shin-Hwa Wang. Classification and evolution of bifurcation curves for a porous-medium combustion problem with large activation energy. Communications on Pure & Applied Analysis, 2021, 20 (2) : 559-582. doi: 10.3934/cpaa.2020281

[19]

Guoyuan Chen, Yong Liu, Juncheng Wei. Nondegeneracy of harmonic maps from $ {{\mathbb{R}}^{2}} $ to $ {{\mathbb{S}}^{2}} $. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3215-3233. doi: 10.3934/dcds.2019228

[20]

Magdalena Foryś-Krawiec, Jiří Kupka, Piotr Oprocha, Xueting Tian. On entropy of $ \Phi $-irregular and $ \Phi $-level sets in maps with the shadowing property. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1271-1296. doi: 10.3934/dcds.2020317

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (138)
  • HTML views (167)
  • Cited by (0)

[Back to Top]