
-
Previous Article
Initial boundary value problems for a system of parabolic conservation laws arising from chemotaxis in multi-dimensions
- DCDS Home
- This Issue
-
Next Article
Large-time regular solutions to the modified quasi-geostrophic equation in Besov spaces
Classification of linear skew-products of the complex plane and an affine route to fractalization
Departament de Matemàtiques i Informàtica, Barcelona Graduate School of Mathematics (BGSMath), Universitat de Barcelona (UB), Gran Via de les Corts Catalanes 585, 08007 Barcelona, Spain |
$ \left. \begin{array}{rcl} \theta & \mapsto & \theta+\omega,\\ z & \mapsto & a(\theta)z, \end{array} \right\} $ |
$ \theta\in {\mathbb T} $ |
$ z\in {\mathbb C} $ |
$ \frac{\omega}{2\pi} $ |
$ \theta\mapsto a(\theta) \in {\mathbb C}\setminus \{0\} $ |
$ \theta\mapsto a(\theta) $ |
References:
[1] |
L. V. Ahlfors, Complex Analysis: An Introduction of the Theory of Analytic Functions of one Complex Variable, Second edition. McGraw-Hill Book Co., New York-Toronto-London, 1966. |
[2] |
K. Bjerklöv,
SNA's in the quasi-periodic quadratic family, Comm. Math. Phys., 286 (2009), 137-161.
doi: 10.1007/s00220-008-0626-y. |
[3] |
J.-L. Figueras and À. Haro, Different scenarios for hyperbolicity breakdown in quasiperiodic area preserving twist maps, Chaos, 25 (2015), 123119, 16pp.
doi: 10.1063/1.4938185. |
[4] |
J.-L. Figueras and À. Haro,
A note on the fractalization of saddle invariant curves in quasiperiodic systems, Discrete and Continuous Dynamical Systems - S, 9 (2016), 1095-1107.
doi: 10.3934/dcdss.2016043. |
[5] |
J.-L. Figueras and T. O. Timoudas, Sharp $\frac{1}{2}$-Hölder continuity of the Lyapunov exponent at the bottom of the spectrum for a class of Schrödinger cocycles, Preprint, 2018. |
[6] |
G. Fuhrmann, M. Gröger and T. Jäger,
Non-smooth saddle-node bifurcations Ⅱ: Dimensions of strange attractors, Ergodic Theory Dynam. Systems, 38 (2018), 2989-3011.
doi: 10.1017/etds.2017.4. |
[7] |
G. Fuhrmann and J. Wang, Rectifiability of a class of invariant measures with one non-vanishing Lyapunov exponent, Discrete Contin. Dyn. Syst. Ser. A, 37 92017), 5747–5761.
doi: 10.3934/dcds.2017249. |
[8] |
P. Glendinning,
Global attractors of pinched skew products, Dyn. Syst., 17 (2002), 287-294.
doi: 10.1080/14689360210160878. |
[9] |
G. H. Hardy and J. E. Littlewood,
Some problems of diophantine approximation, Acta Math., 37 (1914), 193-239.
doi: 10.1007/BF02401834. |
[10] |
À. Haro and R. de la Llave, Manifolds on the verge of a hyperbolicity breakdown, Chaos, 16 (2006), 013120, 8pp.
doi: 10.1063/1.2150947. |
[11] |
À. Haro and C. Simó, To be or not to be a SNA: That is the question, Preprint, 2006. |
[12] |
T. H. Jäger,
Quasiperiodically forced interval maps with negative Schwarzian derivative, Nonlinearity, 16 (2003), 1239-1255.
doi: 10.1088/0951-7715/16/4/303. |
[13] |
T. H. Jäger,
On the structure of strange non-chaotic attractors in pinched skew products, Ergodic Theory Dynam. Systems, 27 (2007), 493-510.
doi: 10.1017/S0143385706000745. |
[14] |
À. Jorba, C. Núñez, R. Obaya and J. C. Tatjer,
Old and new results on strange nonchaotic attractors, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 17 (2007), 3895-3928.
doi: 10.1142/S0218127407019780. |
[15] |
À. Jorba,
Numerical computation of the normal behaviour of invariant curves of $n$-dimensional maps, Nonlinearity, 14 (2001), 943-976.
doi: 10.1088/0951-7715/14/5/303. |
[16] |
À. Jorba and J. C. Tatjer,
A mechanism for the fractalization of invariant curves in quasi-periodically forced 1-D maps, Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), 537-567.
doi: 10.3934/dcdsb.2008.10.537. |
[17] |
A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, volume 54 of Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, 1995.
doi: 10.1017/CBO9780511809187.![]() ![]() ![]() |
[18] |
A. Ya. Khinchin, Continued Fractions, Dover Publications, Inc., Mineola, NY, russian edition, 1997. With a preface by B. V. Gnedenko, Reprint of the 1964 translation. |
[19] |
S. Lang, Introduction to Diophantine Approximations, Springer-Verlag, New York, second edition, 1995.
doi: 10.1007/978-1-4612-4220-8. |
[20] |
L. Nirenberg, A proof of the Malgrange preparation theorem, In Proceedings of Liverpool Singularities–-Symposium, I (1969/70), pages 97–105. Lecture Notes in Mathematics, Vol. 192. Springer, Berlin, 1971. |
[21] |
M. Ponce,
Local dynamics for fibred holomorphic transformations, Nonlinearity, 20 (2007), 2939-2955.
doi: 10.1088/0951-7715/20/12/011. |
[22] |
A. Prasad, V. Mehra and R. Ramaskrishna,
Strange nonchaotic attractors in the quasiperiodically forced logistic map, Phys. Rev. E, 57 (1998), 1576-1584.
doi: 10.1103/PhysRevE.57.1576. |
[23] |
A. Prasad, S. S. Negi and R. Ramaswamy,
Strange nonchaotic attractors, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 11 (2001), 291-309.
doi: 10.1142/S0218127401002195. |
[24] |
H. Rüssmann,
On optimal estimates for the solutions of linear difference equations on the circle, Celestial Mech., 14 (1976), 33-37.
doi: 10.1007/BF01247129. |
[25] |
J. Stark,
Invariant graphs for forced systems, Phys. D, 109 (1997), 163-179.
doi: 10.1016/S0167-2789(97)00167-X. |
show all references
References:
[1] |
L. V. Ahlfors, Complex Analysis: An Introduction of the Theory of Analytic Functions of one Complex Variable, Second edition. McGraw-Hill Book Co., New York-Toronto-London, 1966. |
[2] |
K. Bjerklöv,
SNA's in the quasi-periodic quadratic family, Comm. Math. Phys., 286 (2009), 137-161.
doi: 10.1007/s00220-008-0626-y. |
[3] |
J.-L. Figueras and À. Haro, Different scenarios for hyperbolicity breakdown in quasiperiodic area preserving twist maps, Chaos, 25 (2015), 123119, 16pp.
doi: 10.1063/1.4938185. |
[4] |
J.-L. Figueras and À. Haro,
A note on the fractalization of saddle invariant curves in quasiperiodic systems, Discrete and Continuous Dynamical Systems - S, 9 (2016), 1095-1107.
doi: 10.3934/dcdss.2016043. |
[5] |
J.-L. Figueras and T. O. Timoudas, Sharp $\frac{1}{2}$-Hölder continuity of the Lyapunov exponent at the bottom of the spectrum for a class of Schrödinger cocycles, Preprint, 2018. |
[6] |
G. Fuhrmann, M. Gröger and T. Jäger,
Non-smooth saddle-node bifurcations Ⅱ: Dimensions of strange attractors, Ergodic Theory Dynam. Systems, 38 (2018), 2989-3011.
doi: 10.1017/etds.2017.4. |
[7] |
G. Fuhrmann and J. Wang, Rectifiability of a class of invariant measures with one non-vanishing Lyapunov exponent, Discrete Contin. Dyn. Syst. Ser. A, 37 92017), 5747–5761.
doi: 10.3934/dcds.2017249. |
[8] |
P. Glendinning,
Global attractors of pinched skew products, Dyn. Syst., 17 (2002), 287-294.
doi: 10.1080/14689360210160878. |
[9] |
G. H. Hardy and J. E. Littlewood,
Some problems of diophantine approximation, Acta Math., 37 (1914), 193-239.
doi: 10.1007/BF02401834. |
[10] |
À. Haro and R. de la Llave, Manifolds on the verge of a hyperbolicity breakdown, Chaos, 16 (2006), 013120, 8pp.
doi: 10.1063/1.2150947. |
[11] |
À. Haro and C. Simó, To be or not to be a SNA: That is the question, Preprint, 2006. |
[12] |
T. H. Jäger,
Quasiperiodically forced interval maps with negative Schwarzian derivative, Nonlinearity, 16 (2003), 1239-1255.
doi: 10.1088/0951-7715/16/4/303. |
[13] |
T. H. Jäger,
On the structure of strange non-chaotic attractors in pinched skew products, Ergodic Theory Dynam. Systems, 27 (2007), 493-510.
doi: 10.1017/S0143385706000745. |
[14] |
À. Jorba, C. Núñez, R. Obaya and J. C. Tatjer,
Old and new results on strange nonchaotic attractors, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 17 (2007), 3895-3928.
doi: 10.1142/S0218127407019780. |
[15] |
À. Jorba,
Numerical computation of the normal behaviour of invariant curves of $n$-dimensional maps, Nonlinearity, 14 (2001), 943-976.
doi: 10.1088/0951-7715/14/5/303. |
[16] |
À. Jorba and J. C. Tatjer,
A mechanism for the fractalization of invariant curves in quasi-periodically forced 1-D maps, Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), 537-567.
doi: 10.3934/dcdsb.2008.10.537. |
[17] |
A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, volume 54 of Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, 1995.
doi: 10.1017/CBO9780511809187.![]() ![]() ![]() |
[18] |
A. Ya. Khinchin, Continued Fractions, Dover Publications, Inc., Mineola, NY, russian edition, 1997. With a preface by B. V. Gnedenko, Reprint of the 1964 translation. |
[19] |
S. Lang, Introduction to Diophantine Approximations, Springer-Verlag, New York, second edition, 1995.
doi: 10.1007/978-1-4612-4220-8. |
[20] |
L. Nirenberg, A proof of the Malgrange preparation theorem, In Proceedings of Liverpool Singularities–-Symposium, I (1969/70), pages 97–105. Lecture Notes in Mathematics, Vol. 192. Springer, Berlin, 1971. |
[21] |
M. Ponce,
Local dynamics for fibred holomorphic transformations, Nonlinearity, 20 (2007), 2939-2955.
doi: 10.1088/0951-7715/20/12/011. |
[22] |
A. Prasad, V. Mehra and R. Ramaskrishna,
Strange nonchaotic attractors in the quasiperiodically forced logistic map, Phys. Rev. E, 57 (1998), 1576-1584.
doi: 10.1103/PhysRevE.57.1576. |
[23] |
A. Prasad, S. S. Negi and R. Ramaswamy,
Strange nonchaotic attractors, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 11 (2001), 291-309.
doi: 10.1142/S0218127401002195. |
[24] |
H. Rüssmann,
On optimal estimates for the solutions of linear difference equations on the circle, Celestial Mech., 14 (1976), 33-37.
doi: 10.1007/BF01247129. |
[25] |
J. Stark,
Invariant graphs for forced systems, Phys. D, 109 (1997), 163-179.
doi: 10.1016/S0167-2789(97)00167-X. |


[1] |
Bastian Laubner, Dierk Schleicher, Vlad Vicol. A combinatorial classification of postsingularly finite complex exponential maps. Discrete and Continuous Dynamical Systems, 2008, 22 (3) : 663-682. doi: 10.3934/dcds.2008.22.663 |
[2] |
Fumihiko Nakamura, Yushi Nakano, Hisayoshi Toyokawa. Lyapunov exponents for random maps. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022058 |
[3] |
C. Alonso-González, M. I. Camacho, F. Cano. Topological classification of multiple saddle connections. Discrete and Continuous Dynamical Systems, 2006, 15 (2) : 395-414. doi: 10.3934/dcds.2006.15.395 |
[4] |
Rafael de la Llave, Jason D. Mireles James. Parameterization of invariant manifolds by reducibility for volume preserving and symplectic maps. Discrete and Continuous Dynamical Systems, 2012, 32 (12) : 4321-4360. doi: 10.3934/dcds.2012.32.4321 |
[5] |
Dongkui Ma, Min Wu. Topological pressure and topological entropy of a semigroup of maps. Discrete and Continuous Dynamical Systems, 2011, 31 (2) : 545-557 . doi: 10.3934/dcds.2011.31.545 |
[6] |
Janusz Mierczyński, Wenxian Shen. Formulas for generalized principal Lyapunov exponent for parabolic PDEs. Discrete and Continuous Dynamical Systems - S, 2016, 9 (4) : 1189-1199. doi: 10.3934/dcdss.2016048 |
[7] |
Pedro Duarte, Silvius Klein, Manuel Santos. A random cocycle with non Hölder Lyapunov exponent. Discrete and Continuous Dynamical Systems, 2019, 39 (8) : 4841-4861. doi: 10.3934/dcds.2019197 |
[8] |
Sanjeeva Balasuriya. Uncertainty in finite-time Lyapunov exponent computations. Journal of Computational Dynamics, 2020, 7 (2) : 313-337. doi: 10.3934/jcd.2020013 |
[9] |
Boris Hasselblatt, Zbigniew Nitecki, James Propp. Topological entropy for nonuniformly continuous maps. Discrete and Continuous Dynamical Systems, 2008, 22 (1&2) : 201-213. doi: 10.3934/dcds.2008.22.201 |
[10] |
Xu Zhang, Guanrong Chen. Polynomial maps with hidden complex dynamics. Discrete and Continuous Dynamical Systems - B, 2019, 24 (6) : 2941-2954. doi: 10.3934/dcdsb.2018293 |
[11] |
César J. Niche. Topological entropy of a magnetic flow and the growth of the number of trajectories. Discrete and Continuous Dynamical Systems, 2004, 11 (2&3) : 577-580. doi: 10.3934/dcds.2004.11.577 |
[12] |
Daniel Guan. Classification of compact complex homogeneous spaces with invariant volumes. Electronic Research Announcements, 1997, 3: 90-92. |
[13] |
Ralf Spatzier, Lei Yang. Exponential mixing and smooth classification of commuting expanding maps. Journal of Modern Dynamics, 2017, 11: 263-312. doi: 10.3934/jmd.2017012 |
[14] |
Alena Erchenko. Flexibility of Lyapunov exponents for expanding circle maps. Discrete and Continuous Dynamical Systems, 2019, 39 (5) : 2325-2342. doi: 10.3934/dcds.2019098 |
[15] |
Dante Carrasco-Olivera, Roger Metzger Alvan, Carlos Arnoldo Morales Rojas. Topological entropy for set-valued maps. Discrete and Continuous Dynamical Systems - B, 2015, 20 (10) : 3461-3474. doi: 10.3934/dcdsb.2015.20.3461 |
[16] |
Àngel Jorba, Pau Rabassa, Joan Carles Tatjer. Superstable periodic orbits of 1d maps under quasi-periodic forcing and reducibility loss. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 589-597. doi: 10.3934/dcds.2014.34.589 |
[17] |
Gabriel Fuhrmann, Jing Wang. Rectifiability of a class of invariant measures with one non-vanishing Lyapunov exponent. Discrete and Continuous Dynamical Systems, 2017, 37 (11) : 5747-5761. doi: 10.3934/dcds.2017249 |
[18] |
Jinhao Liang. Positive Lyapunov exponent for a class of quasi-periodic cocycles. Discrete and Continuous Dynamical Systems, 2020, 40 (3) : 1361-1387. doi: 10.3934/dcds.2020080 |
[19] |
Meiyu Su. True laminations for complex Hènon maps. Conference Publications, 2003, 2003 (Special) : 834-841. doi: 10.3934/proc.2003.2003.834 |
[20] |
Vladislav Kruglov, Dmitry Malyshev, Olga Pochinka. Topological classification of $Ω$-stable flows on surfaces by means of effectively distinguishable multigraphs. Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 4305-4327. doi: 10.3934/dcds.2018188 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]