• Previous Article
    General decay of the solution to a nonlinear viscoelastic modified von-Kármán system with delay
  • DCDS Home
  • This Issue
  • Next Article
    Classification of linear skew-products of the complex plane and an affine route to fractalization
July  2019, 39(7): 3789-3838. doi: 10.3934/dcds.2019154

Initial boundary value problems for a system of parabolic conservation laws arising from chemotaxis in multi-dimensions

1. 

Department of Mathematical Sciences, Clemson University, Clemson, SC 29634, USA

2. 

Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260, USA

3. 

Department of Applied Mathematics, Hong Kong Polytechnic University, Hung Hom, Hong Kong, China

4. 

Department of Mathematics, Tulane University, New Orleans, LA 70118, USA

* Corresponding author

Received  March 2018 Revised  December 2018 Published  April 2019

We study the qualitative behavior of a system of parabolic conservation laws, derived from a Keller-Segel type chemotaxis model with singular sensitivity, on the unit square or cube subject to various types of boundary conditions. It is shown that for given initial data in $H^3(\Omega)$, under the assumption that only the entropic energy associated with the initial data is small, there exist global-in-time classical solutions to the initial-boundary value problems of the model subject to the Neumann-Stress-free and Dirichlet-Stress-free type boundary conditions; these solutions converge to equilibrium states, determined from initial and/or boundary data, exponentially rapidly as time goes to infinity. In addition, it is shown that the solutions of the fully dissipative model converge to those of the corresponding partially dissipative model as the chemical diffusion rate tends to zero under the Neumann-Stress-free type boundary conditions. Numerical analysis is performed for a discretization of the model with the Dirichlet-Stress-free type boundary conditions, and a monotonic exponential decay to the equilibrium solution (analogous to the continuous case) is proven. Numerical simulations are supplemented to illustrate the exponential decay, test the assumptions of the exponential decay theorem, and to predict boundary layer formation under the Dirichlet-Stress-free type boundary conditions.

Citation: Leo G. Rebholz, Dehua Wang, Zhian Wang, Camille Zerfas, Kun Zhao. Initial boundary value problems for a system of parabolic conservation laws arising from chemotaxis in multi-dimensions. Discrete & Continuous Dynamical Systems - A, 2019, 39 (7) : 3789-3838. doi: 10.3934/dcds.2019154
References:
[1]

J. Adler, Chemotaxis in bacteria, Science, 153 (1966), 708-716.   Google Scholar

[2]

M. AkbasS. Kaya and L. Rebholz, On the stability at all times of linearly extrapolated BDF2 timestepping for multiphysics incompressible flow problems, Numer. Meth. Part. Diff. Equ., 33 (2017), 995-1017.  doi: 10.1002/num.22061.  Google Scholar

[3]

N. BellomoA. BellouquidY. Tao and M. Winkler, Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 25 (2015), 1663-1763.  doi: 10.1142/S021820251550044X.  Google Scholar

[4]

P. Biler, Global solutions to some parabolic-elliptic systems of chemotaxis, Adv. Math. Sci. Appl., 9 (1999), 347-359.   Google Scholar

[5]

J. P. Bourguignon and H. Brezis, Remarks on the Euler equation, J. Func. Anal., 15 (1974), 341-363.  doi: 10.1016/0022-1236(74)90027-5.  Google Scholar

[6]

S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, volume 15 of Texts in Applied Mathematics, Springer Science+Business Media, LLC, 2008. doi: 10.1007/978-0-387-75934-0.  Google Scholar

[7]

F. W. DahlquistP. Lovely and D. E. Jr Koshland, Quantitative analysis of bacterial migration in chemotaxis, Nature, New Biol., 236 (1972), 120-123.  doi: 10.1038/newbio236120a0.  Google Scholar

[8]

C. Deng and T. Li, Well-posedness of a 3D parabolic-hyperbolic Keller-Segel system in the Sobolev space framework, J. Differential Equations, 257 (2014), 1311-1332.  doi: 10.1016/j.jde.2014.05.014.  Google Scholar

[9]

J. Fan and K. Zhao, Blow up criteria for a hyperbolic-parabolic system arising from chemotaxis, J. Math. Anal. Appl., 394 (2012), 687-695.  doi: 10.1016/j.jmaa.2012.05.036.  Google Scholar

[10]

M. A. FontelosA. Friedman and B. Hu, Mathematical analysis of a model for the initiation of angiogenesis, SIAM J. Math. Anal., 33 (2002), 1330-1355.  doi: 10.1137/S0036141001385046.  Google Scholar

[11]

K. Fujie, Boundedness in a fully parabolic chemotaxis system with singular sensitivity, J. Math. Anal. Appl., 424 (2015), 675-684.  doi: 10.1016/j.jmaa.2014.11.045.  Google Scholar

[12]

K. Fujie and T. Senba, Global existence and boundedness of radial solutions to a two dimensional fully parabolic chemotaxis system with general sensitivity, Nonlinearity, 29 (2016), 2417-2450.  doi: 10.1088/0951-7715/29/8/2417.  Google Scholar

[13]

J. GuoJ. XiaoH. Zhao and C. Zhu, Global solutions to a hyperbolic-parabolic coupled system with large initial data, Acta Math. Sci. Ser. B Engl. Ed, 29 (2009), 629-641.  doi: 10.1016/S0252-9602(09)60059-X.  Google Scholar

[14]

C. Hao, Global well-posedness for a multidimensional chemotaxis model in critical Besov spaces, Z. Angew. Math. Phys., 63 (2012), 825-834.  doi: 10.1007/s00033-012-0193-0.  Google Scholar

[15]

T. HeisterM. A. Olshanskii and L. Rebholz, Unconditional long-time stability of a velocity-vorticity method for the 2D Navier-Stokes equations, Numer. Math., 135 (2017), 143-167.  doi: 10.1007/s00211-016-0794-1.  Google Scholar

[16]

T. Hillen and K. Painter, A users guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183-217.  doi: 10.1007/s00285-008-0201-3.  Google Scholar

[17]

D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences I, Jahresberichteder DMV, 105 (2003), 103-165.   Google Scholar

[18]

Q. HouZ. Wang and K. Zhao, Boundary layer problem on a hyperbolic system arising from chemotaxis, J. Differential Equations, 261 (2016), 5035-5070.  doi: 10.1016/j.jde.2016.07.018.  Google Scholar

[19]

Q. HouC. LiuY. Wang and Z. Wang, Stability of boundary layers for a viscous hyperbolic system arising from chemotaxis: one dimensional case, SIAM J. Math. Anal., 50 (2018), 3058-3091.  doi: 10.1137/17M112748X.  Google Scholar

[20]

H. JinJ. Li and Z. Wang, Asymptotic stability of traveling waves of a chemotaxis model with singular sensitivity, J. Differential Equations, 255 (2013), 193-219.  doi: 10.1016/j.jde.2013.04.002.  Google Scholar

[21]

Y. V. KalininL. JiangY. Tu and M. Wu, Logarithmic sensing in Escherichia coli bacterial chemotaxis, Biophysical J., 96 (2009), 2439-2448.  doi: 10.1016/j.bpj.2008.10.027.  Google Scholar

[22]

E. F. Keller and L. A. Segel, Traveling bands of chemotactic bacteria: A theoretical analysis, J. Theor. Biol., 30 (1971), 235-248.  doi: 10.1016/0022-5193(71)90051-8.  Google Scholar

[23]

J. Lankeit, A new approach toward boundedness in a two-dimensional parabolic chemotaxis system with singular sensitivity, Math. Methods Appl. Sci., 39 (2016), 394-404.  doi: 10.1002/mma.3489.  Google Scholar

[24]

J. Lankeit and M. Winkler, A generalized solution concept for the Keller-Segel system with logarithmic sensitivity: Global solvability for large nonradial data, NoDEA Nonlinear Differential Equations Appl., 24 (2017), Art. 49, 33 pp. doi: 10.1007/s00030-017-0472-8.  Google Scholar

[25]

H. A. Levine and B. D. Sleeman, A system of reaction diffusion equations arising in the theory of reinforced random walks, SIAM J. Appl. Math., 57 (1997), 683-730.  doi: 10.1137/S0036139995291106.  Google Scholar

[26]

H. A. LevineB. D. Sleeman and M. Nilsen-Hamilton, A mathematical model for the roles of pericytes and macrophages in the initiation of angiogenesis. Ⅰ. The role of protease inhibitors in preventing angiogenesis, Math. Biosci., 168 (2000), 71-115.  doi: 10.1016/S0025-5564(00)00034-1.  Google Scholar

[27]

D. LiT. Li and K. Zhao, On a hyperbolic-parabolic system modeling chemotaxis, Math. Models Methods Appl. Sci., 21 (2011), 1631-1650.  doi: 10.1142/S0218202511005519.  Google Scholar

[28]

D. LiR. Pan and K. Zhao, Quantitative decay of a one-dimensional hybrid chemotaxis model with large data, Nonlinearity, 28 (2015), 2181-2210.  doi: 10.1088/0951-7715/28/7/2181.  Google Scholar

[29]

H. Li and K. Zhao, Initial boundary value problems for a system of hyperbolic balance laws arising from chemotaxis, J. Differential Equations, 258 (2015), 302-338.  doi: 10.1016/j.jde.2014.09.014.  Google Scholar

[30]

T. LiR. Pan and K. Zhao, Global dynamics of a hyperbolic-parabolic model arising from chemotaxis, SIAM J. Appl. Math., 72 (2012), 417-443.  doi: 10.1137/110829453.  Google Scholar

[31]

T. Li and Z. Wang, Nonlinear stability of traveling waves to a hyperbolic-parabolic system modeling chemotaxis, SIAM J. Appl. Math., 70 (2009/10), 1522-1541.  doi: 10.1137/09075161X.  Google Scholar

[32]

T. Li and Z. Wang, Nonlinear stability of large amplitude viscous shock waves of a hyperbolic-parabolic system arising in chemotaxis, Math. Models Methods Appl. Sci., 20 (2010), 1967-1998.  doi: 10.1142/S0218202510004830.  Google Scholar

[33]

T. Li and Z. Wang, Asymptotic nonlinear stability of traveling waves to conservation laws arising from chemotaxis, J. Differential Equations, 250 (2011), 1310-1333.  doi: 10.1016/j.jde.2010.09.020.  Google Scholar

[34]

T. Li and Z. Wang, Steadily propagating waves of a chemotaxis model, Math. Biosci., 240 (2012), 161-168.  doi: 10.1016/j.mbs.2012.07.003.  Google Scholar

[35]

V. MartinezZ. Wang and K. Zhao, Asymptotic and viscous stability of large-amplitude solutions of a hyperbolic system arising from biology, Indiana Univ. Math. J., 67 (2018), 1383-1424.  doi: 10.1512/iumj.2018.67.7394.  Google Scholar

[36]

T. Nishida, Nonlinear Hyperbolic Equations and Related Topics in Fluid Dynamics, Publ. Math. D'osay 78-02, Département de Mathématique, Université de Paris-Sud, Orsay, France, 1978.  Google Scholar

[37]

H. Othmer and A. Stevens, Aggregation, blowup, and collapse: The ABCs of taxis in reinforced random walks, SIAM J. Appl. Math., 57 (1997), 1044-1081.  doi: 10.1137/S0036139995288976.  Google Scholar

[38]

H. PengZ. WangK. Zhao and C. Zhu, Boundary layers and stabilization of the singular Keller-Segel system, Kinet. Relat. Models, 11 (2018), 1085-1123.  doi: 10.3934/krm.2018042.  Google Scholar

[39]

H. PengH. Wen and C. Zhu, Global well-posedness and zero diffusion limit of classical solutions to 3D conservation laws arising in chemotaxis, Z. Angew. Math. Phys., 65 (2014), 1167-1188.  doi: 10.1007/s00033-013-0378-1.  Google Scholar

[40]

S. Schochet, The compressible Euler equations in a bounded domain: Existence of solutions and the incompressible limit, Comm. Math. Phys., 104 (1986), 49-75.  doi: 10.1007/BF01210792.  Google Scholar

[41]

C. Stinner and M. Winkler, Global weak solutions in a chemotaxis system with large singular sensitivity, Nonlinear Analysis: Real World Applications, 12 (2011), 3727-3740.  doi: 10.1016/j.nonrwa.2011.07.006.  Google Scholar

[42]

Y. TaoL. Wang and Z. Wang, Large-time behavior of a parabolic-parabolic chemotaxis model with logarithmic sensitivity in one dimension, Discrete Contin. Dyn. Syst.-Series B., 18 (2013), 821-845.  doi: 10.3934/dcdsb.2013.18.821.  Google Scholar

[43]

Z. Wang and T. Hillen, Shock formation in a chemotaxis model, Math. Methods Appl. Sci., 31 (2008), 45-70.  doi: 10.1002/mma.898.  Google Scholar

[44]

Z. WangZ. Xiang and P. Yu, Asymptotic dynamics on a singular chemotaxis system modeling onset of tumor angiogenesis, J. Differential Equations, 260 (2016), 2225-2258.  doi: 10.1016/j.jde.2015.09.063.  Google Scholar

[45]

Z. Wang and K. Zhao, Global dynamics and diffusion limit of a one-dimensional repulsive chemotaxis model, Comm. Pure Appl. Anal., 12 (2013), 3027-3046.  doi: 10.3934/cpaa.2013.12.3027.  Google Scholar

[46]

M. Winkler, Global solutions in a fully parabolic chemotaxis system with singular sensitivity, Math. Methods Appl. Sci., 34 (2011), 176-190.  doi: 10.1002/mma.1346.  Google Scholar

[47]

M. Winkler, The two-dimensional Keller-Segel system with singular sensitivity and signal absorption: Global large data solutions and their relaxation properties, Math. Models Methods Appl. Sci., 26 (2016), 987-1024.  doi: 10.1142/S0218202516500238.  Google Scholar

[48]

M. Winkler, The two-dimensional Keller-Segel system with singular sensitivity and signal absorption: Eventual smoothness and equilibration of small-mass solutions, preprint. Google Scholar

[49]

M. Winkler and T. Yokota, Stabilization in the logarithmic Keller-Segel system, Nonlinear Analysis, 170 (2018), 123-141.  doi: 10.1016/j.na.2018.01.002.  Google Scholar

[50]

Y. Xiao and Z.-P. Xin, On the vanishing viscosity limit for the 3D Navier-Stokes equations with a slip boundary condition, Comm. Pure Appl. Math., 60 (2007), 1027-1055.  doi: 10.1002/cpa.20187.  Google Scholar

[51]

M. Zhang and C. Zhu, Global existence of solutions to a hyperbolic-parabolic system, Proc. Amer. Math. Soc., 135 (2006), 1017-1027.  doi: 10.1090/S0002-9939-06-08773-9.  Google Scholar

[52]

X. Zhao and S. Zheng, Global boundedness of solutions in a parabolic-parabolic chemotaxis system with singular sensitivity, J. Math. Anal. Appl., 443 (2016), 445-452.  doi: 10.1016/j.jmaa.2016.05.036.  Google Scholar

show all references

References:
[1]

J. Adler, Chemotaxis in bacteria, Science, 153 (1966), 708-716.   Google Scholar

[2]

M. AkbasS. Kaya and L. Rebholz, On the stability at all times of linearly extrapolated BDF2 timestepping for multiphysics incompressible flow problems, Numer. Meth. Part. Diff. Equ., 33 (2017), 995-1017.  doi: 10.1002/num.22061.  Google Scholar

[3]

N. BellomoA. BellouquidY. Tao and M. Winkler, Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 25 (2015), 1663-1763.  doi: 10.1142/S021820251550044X.  Google Scholar

[4]

P. Biler, Global solutions to some parabolic-elliptic systems of chemotaxis, Adv. Math. Sci. Appl., 9 (1999), 347-359.   Google Scholar

[5]

J. P. Bourguignon and H. Brezis, Remarks on the Euler equation, J. Func. Anal., 15 (1974), 341-363.  doi: 10.1016/0022-1236(74)90027-5.  Google Scholar

[6]

S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, volume 15 of Texts in Applied Mathematics, Springer Science+Business Media, LLC, 2008. doi: 10.1007/978-0-387-75934-0.  Google Scholar

[7]

F. W. DahlquistP. Lovely and D. E. Jr Koshland, Quantitative analysis of bacterial migration in chemotaxis, Nature, New Biol., 236 (1972), 120-123.  doi: 10.1038/newbio236120a0.  Google Scholar

[8]

C. Deng and T. Li, Well-posedness of a 3D parabolic-hyperbolic Keller-Segel system in the Sobolev space framework, J. Differential Equations, 257 (2014), 1311-1332.  doi: 10.1016/j.jde.2014.05.014.  Google Scholar

[9]

J. Fan and K. Zhao, Blow up criteria for a hyperbolic-parabolic system arising from chemotaxis, J. Math. Anal. Appl., 394 (2012), 687-695.  doi: 10.1016/j.jmaa.2012.05.036.  Google Scholar

[10]

M. A. FontelosA. Friedman and B. Hu, Mathematical analysis of a model for the initiation of angiogenesis, SIAM J. Math. Anal., 33 (2002), 1330-1355.  doi: 10.1137/S0036141001385046.  Google Scholar

[11]

K. Fujie, Boundedness in a fully parabolic chemotaxis system with singular sensitivity, J. Math. Anal. Appl., 424 (2015), 675-684.  doi: 10.1016/j.jmaa.2014.11.045.  Google Scholar

[12]

K. Fujie and T. Senba, Global existence and boundedness of radial solutions to a two dimensional fully parabolic chemotaxis system with general sensitivity, Nonlinearity, 29 (2016), 2417-2450.  doi: 10.1088/0951-7715/29/8/2417.  Google Scholar

[13]

J. GuoJ. XiaoH. Zhao and C. Zhu, Global solutions to a hyperbolic-parabolic coupled system with large initial data, Acta Math. Sci. Ser. B Engl. Ed, 29 (2009), 629-641.  doi: 10.1016/S0252-9602(09)60059-X.  Google Scholar

[14]

C. Hao, Global well-posedness for a multidimensional chemotaxis model in critical Besov spaces, Z. Angew. Math. Phys., 63 (2012), 825-834.  doi: 10.1007/s00033-012-0193-0.  Google Scholar

[15]

T. HeisterM. A. Olshanskii and L. Rebholz, Unconditional long-time stability of a velocity-vorticity method for the 2D Navier-Stokes equations, Numer. Math., 135 (2017), 143-167.  doi: 10.1007/s00211-016-0794-1.  Google Scholar

[16]

T. Hillen and K. Painter, A users guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183-217.  doi: 10.1007/s00285-008-0201-3.  Google Scholar

[17]

D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences I, Jahresberichteder DMV, 105 (2003), 103-165.   Google Scholar

[18]

Q. HouZ. Wang and K. Zhao, Boundary layer problem on a hyperbolic system arising from chemotaxis, J. Differential Equations, 261 (2016), 5035-5070.  doi: 10.1016/j.jde.2016.07.018.  Google Scholar

[19]

Q. HouC. LiuY. Wang and Z. Wang, Stability of boundary layers for a viscous hyperbolic system arising from chemotaxis: one dimensional case, SIAM J. Math. Anal., 50 (2018), 3058-3091.  doi: 10.1137/17M112748X.  Google Scholar

[20]

H. JinJ. Li and Z. Wang, Asymptotic stability of traveling waves of a chemotaxis model with singular sensitivity, J. Differential Equations, 255 (2013), 193-219.  doi: 10.1016/j.jde.2013.04.002.  Google Scholar

[21]

Y. V. KalininL. JiangY. Tu and M. Wu, Logarithmic sensing in Escherichia coli bacterial chemotaxis, Biophysical J., 96 (2009), 2439-2448.  doi: 10.1016/j.bpj.2008.10.027.  Google Scholar

[22]

E. F. Keller and L. A. Segel, Traveling bands of chemotactic bacteria: A theoretical analysis, J. Theor. Biol., 30 (1971), 235-248.  doi: 10.1016/0022-5193(71)90051-8.  Google Scholar

[23]

J. Lankeit, A new approach toward boundedness in a two-dimensional parabolic chemotaxis system with singular sensitivity, Math. Methods Appl. Sci., 39 (2016), 394-404.  doi: 10.1002/mma.3489.  Google Scholar

[24]

J. Lankeit and M. Winkler, A generalized solution concept for the Keller-Segel system with logarithmic sensitivity: Global solvability for large nonradial data, NoDEA Nonlinear Differential Equations Appl., 24 (2017), Art. 49, 33 pp. doi: 10.1007/s00030-017-0472-8.  Google Scholar

[25]

H. A. Levine and B. D. Sleeman, A system of reaction diffusion equations arising in the theory of reinforced random walks, SIAM J. Appl. Math., 57 (1997), 683-730.  doi: 10.1137/S0036139995291106.  Google Scholar

[26]

H. A. LevineB. D. Sleeman and M. Nilsen-Hamilton, A mathematical model for the roles of pericytes and macrophages in the initiation of angiogenesis. Ⅰ. The role of protease inhibitors in preventing angiogenesis, Math. Biosci., 168 (2000), 71-115.  doi: 10.1016/S0025-5564(00)00034-1.  Google Scholar

[27]

D. LiT. Li and K. Zhao, On a hyperbolic-parabolic system modeling chemotaxis, Math. Models Methods Appl. Sci., 21 (2011), 1631-1650.  doi: 10.1142/S0218202511005519.  Google Scholar

[28]

D. LiR. Pan and K. Zhao, Quantitative decay of a one-dimensional hybrid chemotaxis model with large data, Nonlinearity, 28 (2015), 2181-2210.  doi: 10.1088/0951-7715/28/7/2181.  Google Scholar

[29]

H. Li and K. Zhao, Initial boundary value problems for a system of hyperbolic balance laws arising from chemotaxis, J. Differential Equations, 258 (2015), 302-338.  doi: 10.1016/j.jde.2014.09.014.  Google Scholar

[30]

T. LiR. Pan and K. Zhao, Global dynamics of a hyperbolic-parabolic model arising from chemotaxis, SIAM J. Appl. Math., 72 (2012), 417-443.  doi: 10.1137/110829453.  Google Scholar

[31]

T. Li and Z. Wang, Nonlinear stability of traveling waves to a hyperbolic-parabolic system modeling chemotaxis, SIAM J. Appl. Math., 70 (2009/10), 1522-1541.  doi: 10.1137/09075161X.  Google Scholar

[32]

T. Li and Z. Wang, Nonlinear stability of large amplitude viscous shock waves of a hyperbolic-parabolic system arising in chemotaxis, Math. Models Methods Appl. Sci., 20 (2010), 1967-1998.  doi: 10.1142/S0218202510004830.  Google Scholar

[33]

T. Li and Z. Wang, Asymptotic nonlinear stability of traveling waves to conservation laws arising from chemotaxis, J. Differential Equations, 250 (2011), 1310-1333.  doi: 10.1016/j.jde.2010.09.020.  Google Scholar

[34]

T. Li and Z. Wang, Steadily propagating waves of a chemotaxis model, Math. Biosci., 240 (2012), 161-168.  doi: 10.1016/j.mbs.2012.07.003.  Google Scholar

[35]

V. MartinezZ. Wang and K. Zhao, Asymptotic and viscous stability of large-amplitude solutions of a hyperbolic system arising from biology, Indiana Univ. Math. J., 67 (2018), 1383-1424.  doi: 10.1512/iumj.2018.67.7394.  Google Scholar

[36]

T. Nishida, Nonlinear Hyperbolic Equations and Related Topics in Fluid Dynamics, Publ. Math. D'osay 78-02, Département de Mathématique, Université de Paris-Sud, Orsay, France, 1978.  Google Scholar

[37]

H. Othmer and A. Stevens, Aggregation, blowup, and collapse: The ABCs of taxis in reinforced random walks, SIAM J. Appl. Math., 57 (1997), 1044-1081.  doi: 10.1137/S0036139995288976.  Google Scholar

[38]

H. PengZ. WangK. Zhao and C. Zhu, Boundary layers and stabilization of the singular Keller-Segel system, Kinet. Relat. Models, 11 (2018), 1085-1123.  doi: 10.3934/krm.2018042.  Google Scholar

[39]

H. PengH. Wen and C. Zhu, Global well-posedness and zero diffusion limit of classical solutions to 3D conservation laws arising in chemotaxis, Z. Angew. Math. Phys., 65 (2014), 1167-1188.  doi: 10.1007/s00033-013-0378-1.  Google Scholar

[40]

S. Schochet, The compressible Euler equations in a bounded domain: Existence of solutions and the incompressible limit, Comm. Math. Phys., 104 (1986), 49-75.  doi: 10.1007/BF01210792.  Google Scholar

[41]

C. Stinner and M. Winkler, Global weak solutions in a chemotaxis system with large singular sensitivity, Nonlinear Analysis: Real World Applications, 12 (2011), 3727-3740.  doi: 10.1016/j.nonrwa.2011.07.006.  Google Scholar

[42]

Y. TaoL. Wang and Z. Wang, Large-time behavior of a parabolic-parabolic chemotaxis model with logarithmic sensitivity in one dimension, Discrete Contin. Dyn. Syst.-Series B., 18 (2013), 821-845.  doi: 10.3934/dcdsb.2013.18.821.  Google Scholar

[43]

Z. Wang and T. Hillen, Shock formation in a chemotaxis model, Math. Methods Appl. Sci., 31 (2008), 45-70.  doi: 10.1002/mma.898.  Google Scholar

[44]

Z. WangZ. Xiang and P. Yu, Asymptotic dynamics on a singular chemotaxis system modeling onset of tumor angiogenesis, J. Differential Equations, 260 (2016), 2225-2258.  doi: 10.1016/j.jde.2015.09.063.  Google Scholar

[45]

Z. Wang and K. Zhao, Global dynamics and diffusion limit of a one-dimensional repulsive chemotaxis model, Comm. Pure Appl. Anal., 12 (2013), 3027-3046.  doi: 10.3934/cpaa.2013.12.3027.  Google Scholar

[46]

M. Winkler, Global solutions in a fully parabolic chemotaxis system with singular sensitivity, Math. Methods Appl. Sci., 34 (2011), 176-190.  doi: 10.1002/mma.1346.  Google Scholar

[47]

M. Winkler, The two-dimensional Keller-Segel system with singular sensitivity and signal absorption: Global large data solutions and their relaxation properties, Math. Models Methods Appl. Sci., 26 (2016), 987-1024.  doi: 10.1142/S0218202516500238.  Google Scholar

[48]

M. Winkler, The two-dimensional Keller-Segel system with singular sensitivity and signal absorption: Eventual smoothness and equilibration of small-mass solutions, preprint. Google Scholar

[49]

M. Winkler and T. Yokota, Stabilization in the logarithmic Keller-Segel system, Nonlinear Analysis, 170 (2018), 123-141.  doi: 10.1016/j.na.2018.01.002.  Google Scholar

[50]

Y. Xiao and Z.-P. Xin, On the vanishing viscosity limit for the 3D Navier-Stokes equations with a slip boundary condition, Comm. Pure Appl. Math., 60 (2007), 1027-1055.  doi: 10.1002/cpa.20187.  Google Scholar

[51]

M. Zhang and C. Zhu, Global existence of solutions to a hyperbolic-parabolic system, Proc. Amer. Math. Soc., 135 (2006), 1017-1027.  doi: 10.1090/S0002-9939-06-08773-9.  Google Scholar

[52]

X. Zhao and S. Zheng, Global boundedness of solutions in a parabolic-parabolic chemotaxis system with singular sensitivity, J. Math. Anal. Appl., 443 (2016), 445-452.  doi: 10.1016/j.jmaa.2016.05.036.  Google Scholar

Figure 1.  Shown above is decay in time of solution norms to Algorithm 5.1, with varying $ \varepsilon $
Figure 2.  Shown above are plots of solutions for $ \varepsilon = 0.001 $ and varying times, for Numerical Test 3. Contours of $ p $ (top) and $ | {\bf q}| $ (middle row) are shown at various times, and the bottom row shows plots of $ p $ and $ {\bf q}_2 $ with fixed $ x = 0.5 $ and varying $ t $
Figure 3.  Shown above is a plot of $ | {\bf q}| $ with fixed $ x = 0.5 $ and $ t = 0.2 $ (right), for varying $ \varepsilon $ in numerical experiment 3
Figure 4.  Shown above are solution plots for $ \varepsilon = 0.01 $ at varying times, for numerical experiment 4. Across the top row are contour plots of solutions $ p $, in the middle row are contours for $ | {\bf q}| $, and in the bottom row we show plots of $ p $ (left) and $ {\bf q}_2 $ (right) along $ x = 0 $
Figure 5.  Shown above are plots of $ (\| p(t)\|^2 + \| {\bf q}(t) \|^2) $ versus time $ t $ (left), and $ {\bf q}_2(0,y,0.1) $, for varying $ \varepsilon $, for numerical experiment 4
Table 1.  Values of energy norms at the end time $ T = 1 $ for various $ P^* $ values
Backward Euler
$ P^* $ $ \left( \| p_h(T) \|^2 + \| {\bf q}_h(T) \|^2 \right)^{1/2} $
50 433.1920
51 913.7230
52 5.3532e+03
53 1.4410e+04
54 2.7783e+04
55 4.5390e+04
56 7.4976e+04
57 3.6508e+11
58 1.2408e+13
Backward Euler
$ P^* $ $ \left( \| p_h(T) \|^2 + \| {\bf q}_h(T) \|^2 \right)^{1/2} $
50 433.1920
51 913.7230
52 5.3532e+03
53 1.4410e+04
54 2.7783e+04
55 4.5390e+04
56 7.4976e+04
57 3.6508e+11
58 1.2408e+13
Table 2.  Values of the critical $ P^* $ for blowup, for varying time step sizes
$ \Delta t $ $ P^*_{critical} $
0.01 57
0.005 57
0.0025 64
0.00125 90
0.000625 91
0.0003125 90
0.00015625 90
$ \Delta t $ $ P^*_{critical} $
0.01 57
0.005 57
0.0025 64
0.00125 90
0.000625 91
0.0003125 90
0.00015625 90
[1]

Ivonne Rivas, Muhammad Usman, Bing-Yu Zhang. Global well-posedness and asymptotic behavior of a class of initial-boundary-value problem of the Korteweg-De Vries equation on a finite domain. Mathematical Control & Related Fields, 2011, 1 (1) : 61-81. doi: 10.3934/mcrf.2011.1.61

[2]

Peng Jiang. Unique global solution of an initial-boundary value problem to a diffusion approximation model in radiation hydrodynamics. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 3015-3037. doi: 10.3934/dcds.2015.35.3015

[3]

Elena Rossi. Well-posedness of general 1D initial boundary value problems for scalar balance laws. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3577-3608. doi: 10.3934/dcds.2019147

[4]

Zhichun Zhai. Well-posedness for two types of generalized Keller-Segel system of chemotaxis in critical Besov spaces. Communications on Pure & Applied Analysis, 2011, 10 (1) : 287-308. doi: 10.3934/cpaa.2011.10.287

[5]

Haifeng Hu, Kaijun Zhang. Analysis on the initial-boundary value problem of a full bipolar hydrodynamic model for semiconductors. Discrete & Continuous Dynamical Systems - B, 2014, 19 (6) : 1601-1626. doi: 10.3934/dcdsb.2014.19.1601

[6]

Jiahang Che, Li Chen, Simone GÖttlich, Anamika Pandey, Jing Wang. Boundary layer analysis from the Keller-Segel system to the aggregation system in one space dimension. Communications on Pure & Applied Analysis, 2017, 16 (3) : 1013-1036. doi: 10.3934/cpaa.2017049

[7]

Gilles Carbou, Bernard Hanouzet. Relaxation approximation of the Kerr model for the impedance initial-boundary value problem. Conference Publications, 2007, 2007 (Special) : 212-220. doi: 10.3934/proc.2007.2007.212

[8]

Xiaoyun Cai, Liangwen Liao, Yongzhong Sun. Global strong solution to the initial-boundary value problem of a 2-D Kazhikhov-Smagulov type model. Discrete & Continuous Dynamical Systems - S, 2014, 7 (5) : 917-923. doi: 10.3934/dcdss.2014.7.917

[9]

Qi Wang. Boundary spikes of a Keller-Segel chemotaxis system with saturated logarithmic sensitivity. Discrete & Continuous Dynamical Systems - B, 2015, 20 (4) : 1231-1250. doi: 10.3934/dcdsb.2015.20.1231

[10]

Andrea Giorgini. On the Swift-Hohenberg equation with slow and fast dynamics: well-posedness and long-time behavior. Communications on Pure & Applied Analysis, 2016, 15 (1) : 219-241. doi: 10.3934/cpaa.2016.15.219

[11]

Igor Chueshov, Irena Lasiecka, Justin Webster. Flow-plate interactions: Well-posedness and long-time behavior. Discrete & Continuous Dynamical Systems - S, 2014, 7 (5) : 925-965. doi: 10.3934/dcdss.2014.7.925

[12]

Giulio Schimperna, Antonio Segatti, Ulisse Stefanelli. Well-posedness and long-time behavior for a class of doubly nonlinear equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (1) : 15-38. doi: 10.3934/dcds.2007.18.15

[13]

Peng Jiang. Global well-posedness and large time behavior of classical solutions to the diffusion approximation model in radiation hydrodynamics. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 2045-2063. doi: 10.3934/dcds.2017087

[14]

Zhi-Qiang Shao. Lifespan of classical discontinuous solutions to the generalized nonlinear initial-boundary Riemann problem for hyperbolic conservation laws with small BV data: shocks and contact discontinuities. Communications on Pure & Applied Analysis, 2015, 14 (3) : 759-792. doi: 10.3934/cpaa.2015.14.759

[15]

Tatsien Li, Libin Wang. Global classical solutions to a kind of mixed initial-boundary value problem for quasilinear hyperbolic systems. Discrete & Continuous Dynamical Systems - A, 2005, 12 (1) : 59-78. doi: 10.3934/dcds.2005.12.59

[16]

Yi Zhou, Jianli Liu. The initial-boundary value problem on a strip for the equation of time-like extremal surfaces. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 381-397. doi: 10.3934/dcds.2009.23.381

[17]

Hui Huang, Jian-Guo Liu. Well-posedness for the Keller-Segel equation with fractional Laplacian and the theory of propagation of chaos. Kinetic & Related Models, 2016, 9 (4) : 715-748. doi: 10.3934/krm.2016013

[18]

Xianpeng Hu, Dehua Wang. The initial-boundary value problem for the compressible viscoelastic flows. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 917-934. doi: 10.3934/dcds.2015.35.917

[19]

Nicolas Vauchelet. Numerical simulation of a kinetic model for chemotaxis. Kinetic & Related Models, 2010, 3 (3) : 501-528. doi: 10.3934/krm.2010.3.501

[20]

Mapundi K. Banda, Michael Herty. Numerical discretization of stabilization problems with boundary controls for systems of hyperbolic conservation laws. Mathematical Control & Related Fields, 2013, 3 (2) : 121-142. doi: 10.3934/mcrf.2013.3.121

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (95)
  • HTML views (131)
  • Cited by (0)

[Back to Top]