July  2019, 39(7): 3897-3921. doi: 10.3934/dcds.2019157

The mean field analysis of the kuramoto model on graphs Ⅱ. asymptotic stability of the incoherent state, center manifold reduction, and bifurcations

1. 

Institute of Mathematics for Industry, Kyushu University / JST PRESTO, Fukuoka, 819-0395, Japan

2. 

Department of Mathematics, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA

Received  April 2018 Published  April 2019

In our previous work [3], we initiated a mathematical investigation of the onset of synchronization in the Kuramoto model (KM) of coupled phase oscillators on convergent graph sequences. There, we derived and rigorously justified the mean field limit for the KM on graphs. Using linear stability analysis, we identified the critical values of the coupling strength, at which the incoherent state looses stability, thus, determining the onset of synchronization in this model.

In the present paper, we study the corresponding bifurcations. Specifically, we show that similar to the original KM with all-to-all coupling, the onset of synchronization in the KM on graphs is realized via a pitchfork bifurcation. The formula for the stable branch of the bifurcating equilibria involves the principal eigenvalue and the corresponding eigenfunctions of the kernel operator defined by the limit of the graph sequence used in the model. This establishes an explicit link between the network structure and the onset of synchronization in the KM on graphs. The results of this work are illustrated with the bifurcation analysis of the KM on Erdős-Rényi, small-world, as well as certain weighted graphs on a circle.

Citation: Hayato Chiba, Georgi S. Medvedev. The mean field analysis of the kuramoto model on graphs Ⅱ. asymptotic stability of the incoherent state, center manifold reduction, and bifurcations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (7) : 3897-3921. doi: 10.3934/dcds.2019157
References:
[1]

H. Chiba, A proof of the Kuramoto conjecture for a bifurcation structure of the infinite-dimensional Kuramoto model, Ergodic Theory Dynam. Systems, 35 (2015), 762-834.  doi: 10.1017/etds.2013.68.  Google Scholar

[2]

____, A spectral theory of linear operators on rigged Hilbert spaces under analyticity conditions, Adv. Math. 273 (2015), 324-379. doi: 10.1016/j.aim.2015.01.001.  Google Scholar

[3]

H. Chiba and G. S. Medvedev, The mean field analysis of the Kuramoto model on graphs Ⅰ. The mean field equation and the transition point formulas, Discrete and Continuous Dynamical Systems - A, 39 (2019), 131-155.  doi: 10.3934/dcds.2019006.  Google Scholar

[4]

H. Chiba, G. S. Medvedev and M. Mizhura, Bifurcations in the Kuramoto model on graphs, Chaos, 28 (2018), 073109, 10pp. doi: 10.1063/1.5039609.  Google Scholar

[5]

H. Chiba and I. Nishikawa, Center manifold reduction for large populations of globally coupled phase oscillators, Chaos, 21 (2011), 043103, 10pp. doi: 10.1063/1.3647317.  Google Scholar

[6]

H. Dietert, Stability of partially locked states in the Kuramoto model through Landau damping with Sobolev regularity, arXiv e-prints, 2017. Google Scholar

[7]

____, Stability and bifurcation for the Kuramoto model, J. Math. Pures Appl., (9) 105 (2016), 451–489. doi: 10.1016/j.matpur.2015.11.001.  Google Scholar

[8] R. M. Dudley, Real Analysis and Probability, Cambridge Studies in Advanced Mathematics, vol. 74, Cambridge University Press, Cambridge, 2002.  doi: 10.1017/CBO9780511755347.  Google Scholar
[9]

B. FernandezD. Gérard-Varet and G. Giacomin, Landau damping in the Kuramoto model, Ann. Henri Poincaré, 17 (2016), 1793-1823.  doi: 10.1007/s00023-015-0450-9.  Google Scholar

[10]

F. D. Gakhov, Boundary Value Problems, Dover Publications, Inc., New York, 1990, Translated from the Russian, Reprint of the 1966 translation.  Google Scholar

[11] I. M. Gel$'$fand and N. Ya. Vilenkin, Generalized Functions, Vol. 4: Applications of harmonic analysis. Translated by Amiel Feinstein Academic Press, New York - London, 1964.   Google Scholar
[12]

H. Komatsu, Projective and injective limits of weakly compact sequences of locally convex spaces, J. Math. Soc. Japan, 19 (1967), 366-383.  doi: 10.2969/jmsj/01930366.  Google Scholar

[13]

Y. Kuramoto, Self-entrainment of a population of coupled non-linear oscillators, International Symposium on Mathematical Problems in Theoretical Physics (Kyoto Univ., Kyoto, 1975), 420–422. Lecture Notes in Phys., 39. Springer, Berlin, 1975.  Google Scholar

[14]

L. Lovász, Large Networks and Graph Limits, AMS, Providence, RI, 2012. Google Scholar

[15]

L. Lovász and B. Szegedy, Limits of dense graph sequences, J. Combin. Theory Ser. B, 96 (2006), 933-957.  doi: 10.1016/j.jctb.2006.05.002.  Google Scholar

[16]

G. S. Medvedev, The nonlinear heat equation on dense graphs and graph limits, SIAM J. Math. Anal., 46 (2014), 2743-2766.  doi: 10.1137/130943741.  Google Scholar

[17]

____, The nonlinear heat equation on W-random graphs, Arch. Ration. Mech. Anal., 212 (2014), 781-803. doi: 10.1007/s00205-013-0706-9.  Google Scholar

[18]

____, Small-world networks of Kuramoto oscillators, Phys. D, 266 (2014), 13-22. doi: 10.1016/j.physd.2013.09.008.  Google Scholar

[19]

G.S. Medvedev and X. Tang, Stability of twisted states in the Kuramoto model on Cayley and random graphs, Journal of Nonlinear Science, 25 (2015), 1169-1208.  doi: 10.1007/s00332-015-9252-y.  Google Scholar

[20]

C. Mouhot and C. Villani, On Landau damping, Acta Math., 207 (2011), 29-201.  doi: 10.1007/s11511-011-0068-9.  Google Scholar

[21]

S. H. Strogatz, From Kuramoto to Crawford: Exploring the onset of synchronization in populations of coupled oscillators, Phys. D, 143 (2000), 1-20.  doi: 10.1016/S0167-2789(00)00094-4.  Google Scholar

[22]

S. H. Strogatz and R. E. Mirollo, Stability of incoherence in a population of coupled oscillators, J. Statist. Phys., 63 (1991), 613-635.  doi: 10.1007/BF01029202.  Google Scholar

[23]

S. H. StrogatzR. E. Mirollo and P. C. Matthews, Coupled nonlinear oscillators below the synchronization threshold: relaxation by generalized Landau damping, Phys. Rev. Lett., 68 (1992), 2730-2733.  doi: 10.1103/PhysRevLett.68.2730.  Google Scholar

[24]

D. A. Wiley, S. H. Strogatz and M. Girvan, The size of the sync basin, Chaos, 16 (2006), 015103, 8pp. doi: 10.1063/1.2165594.  Google Scholar

show all references

References:
[1]

H. Chiba, A proof of the Kuramoto conjecture for a bifurcation structure of the infinite-dimensional Kuramoto model, Ergodic Theory Dynam. Systems, 35 (2015), 762-834.  doi: 10.1017/etds.2013.68.  Google Scholar

[2]

____, A spectral theory of linear operators on rigged Hilbert spaces under analyticity conditions, Adv. Math. 273 (2015), 324-379. doi: 10.1016/j.aim.2015.01.001.  Google Scholar

[3]

H. Chiba and G. S. Medvedev, The mean field analysis of the Kuramoto model on graphs Ⅰ. The mean field equation and the transition point formulas, Discrete and Continuous Dynamical Systems - A, 39 (2019), 131-155.  doi: 10.3934/dcds.2019006.  Google Scholar

[4]

H. Chiba, G. S. Medvedev and M. Mizhura, Bifurcations in the Kuramoto model on graphs, Chaos, 28 (2018), 073109, 10pp. doi: 10.1063/1.5039609.  Google Scholar

[5]

H. Chiba and I. Nishikawa, Center manifold reduction for large populations of globally coupled phase oscillators, Chaos, 21 (2011), 043103, 10pp. doi: 10.1063/1.3647317.  Google Scholar

[6]

H. Dietert, Stability of partially locked states in the Kuramoto model through Landau damping with Sobolev regularity, arXiv e-prints, 2017. Google Scholar

[7]

____, Stability and bifurcation for the Kuramoto model, J. Math. Pures Appl., (9) 105 (2016), 451–489. doi: 10.1016/j.matpur.2015.11.001.  Google Scholar

[8] R. M. Dudley, Real Analysis and Probability, Cambridge Studies in Advanced Mathematics, vol. 74, Cambridge University Press, Cambridge, 2002.  doi: 10.1017/CBO9780511755347.  Google Scholar
[9]

B. FernandezD. Gérard-Varet and G. Giacomin, Landau damping in the Kuramoto model, Ann. Henri Poincaré, 17 (2016), 1793-1823.  doi: 10.1007/s00023-015-0450-9.  Google Scholar

[10]

F. D. Gakhov, Boundary Value Problems, Dover Publications, Inc., New York, 1990, Translated from the Russian, Reprint of the 1966 translation.  Google Scholar

[11] I. M. Gel$'$fand and N. Ya. Vilenkin, Generalized Functions, Vol. 4: Applications of harmonic analysis. Translated by Amiel Feinstein Academic Press, New York - London, 1964.   Google Scholar
[12]

H. Komatsu, Projective and injective limits of weakly compact sequences of locally convex spaces, J. Math. Soc. Japan, 19 (1967), 366-383.  doi: 10.2969/jmsj/01930366.  Google Scholar

[13]

Y. Kuramoto, Self-entrainment of a population of coupled non-linear oscillators, International Symposium on Mathematical Problems in Theoretical Physics (Kyoto Univ., Kyoto, 1975), 420–422. Lecture Notes in Phys., 39. Springer, Berlin, 1975.  Google Scholar

[14]

L. Lovász, Large Networks and Graph Limits, AMS, Providence, RI, 2012. Google Scholar

[15]

L. Lovász and B. Szegedy, Limits of dense graph sequences, J. Combin. Theory Ser. B, 96 (2006), 933-957.  doi: 10.1016/j.jctb.2006.05.002.  Google Scholar

[16]

G. S. Medvedev, The nonlinear heat equation on dense graphs and graph limits, SIAM J. Math. Anal., 46 (2014), 2743-2766.  doi: 10.1137/130943741.  Google Scholar

[17]

____, The nonlinear heat equation on W-random graphs, Arch. Ration. Mech. Anal., 212 (2014), 781-803. doi: 10.1007/s00205-013-0706-9.  Google Scholar

[18]

____, Small-world networks of Kuramoto oscillators, Phys. D, 266 (2014), 13-22. doi: 10.1016/j.physd.2013.09.008.  Google Scholar

[19]

G.S. Medvedev and X. Tang, Stability of twisted states in the Kuramoto model on Cayley and random graphs, Journal of Nonlinear Science, 25 (2015), 1169-1208.  doi: 10.1007/s00332-015-9252-y.  Google Scholar

[20]

C. Mouhot and C. Villani, On Landau damping, Acta Math., 207 (2011), 29-201.  doi: 10.1007/s11511-011-0068-9.  Google Scholar

[21]

S. H. Strogatz, From Kuramoto to Crawford: Exploring the onset of synchronization in populations of coupled oscillators, Phys. D, 143 (2000), 1-20.  doi: 10.1016/S0167-2789(00)00094-4.  Google Scholar

[22]

S. H. Strogatz and R. E. Mirollo, Stability of incoherence in a population of coupled oscillators, J. Statist. Phys., 63 (1991), 613-635.  doi: 10.1007/BF01029202.  Google Scholar

[23]

S. H. StrogatzR. E. Mirollo and P. C. Matthews, Coupled nonlinear oscillators below the synchronization threshold: relaxation by generalized Landau damping, Phys. Rev. Lett., 68 (1992), 2730-2733.  doi: 10.1103/PhysRevLett.68.2730.  Google Scholar

[24]

D. A. Wiley, S. H. Strogatz and M. Girvan, The size of the sync basin, Chaos, 16 (2006), 015103, 8pp. doi: 10.1063/1.2165594.  Google Scholar

Figure 1.  Deformation of the integral path for the Laplace inversion formula
Figure 2.  Formation of partially phase-locked solutions near a bifurcation with two-dimensional null space. The KM with intrinsic frequencies from the standard normal distribution, graphon (6.21), and random initial condition was for suffiently large time to reach a stationary regime. The values of $ K $ are a) $ 3.5 $, b) $ 4 $, and c) $ 5 $. The asymptotic state in (a) combines oscillators grouped around a $ 1 $-twisted state with those distributed randomly around $ \mathbb{S} $. For increasing values of $ K $, the noisy twisted states become more distinct (b, c)
[1]

Meilan Cai, Maoan Han. Limit cycle bifurcations in a class of piecewise smooth cubic systems with multiple parameters. Communications on Pure & Applied Analysis, 2021, 20 (1) : 55-75. doi: 10.3934/cpaa.2020257

[2]

Yi-Long Luo, Yangjun Ma. Low Mach number limit for the compressible inertial Qian-Sheng model of liquid crystals: Convergence for classical solutions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 921-966. doi: 10.3934/dcds.2020304

[3]

Illés Horváth, Kristóf Attila Horváth, Péter Kovács, Miklós Telek. Mean-field analysis of a scaling MAC radio protocol. Journal of Industrial & Management Optimization, 2021, 17 (1) : 279-297. doi: 10.3934/jimo.2019111

[4]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[5]

Fanni M. Sélley. A self-consistent dynamical system with multiple absolutely continuous invariant measures. Journal of Computational Dynamics, 2021, 8 (1) : 9-32. doi: 10.3934/jcd.2021002

[6]

Shuang Chen, Jinqiao Duan, Ji Li. Effective reduction of a three-dimensional circadian oscillator model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020349

[7]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[8]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[9]

Jie Li, Xiangdong Ye, Tao Yu. Mean equicontinuity, complexity and applications. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 359-393. doi: 10.3934/dcds.2020167

[10]

Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344

[11]

Jiahao Qiu, Jianjie Zhao. Maximal factors of order $ d $ of dynamical cubespaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 601-620. doi: 10.3934/dcds.2020278

[12]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems by stages. Journal of Geometric Mechanics, 2020, 12 (4) : 607-639. doi: 10.3934/jgm.2020029

[13]

Patrick W. Dondl, Martin Jesenko. Threshold phenomenon for homogenized fronts in random elastic media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 353-372. doi: 10.3934/dcdss.2020329

[14]

Jian Zhang, Tony T. Lee, Tong Ye, Liang Huang. An approximate mean queue length formula for queueing systems with varying service rate. Journal of Industrial & Management Optimization, 2021, 17 (1) : 185-204. doi: 10.3934/jimo.2019106

[15]

Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020342

[16]

Parikshit Upadhyaya, Elias Jarlebring, Emanuel H. Rubensson. A density matrix approach to the convergence of the self-consistent field iteration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 99-115. doi: 10.3934/naco.2020018

[17]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[18]

Zongyuan Li, Weinan Wang. Norm inflation for the Boussinesq system. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020353

[19]

Annegret Glitzky, Matthias Liero, Grigor Nika. Dimension reduction of thermistor models for large-area organic light-emitting diodes. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020460

[20]

Tien-Yu Lin, Bhaba R. Sarker, Chien-Jui Lin. An optimal setup cost reduction and lot size for economic production quantity model with imperfect quality and quantity discounts. Journal of Industrial & Management Optimization, 2021, 17 (1) : 467-484. doi: 10.3934/jimo.2020043

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (102)
  • HTML views (164)
  • Cited by (0)

Other articles
by authors

[Back to Top]