July  2019, 39(7): 3941-3967. doi: 10.3934/dcds.2019159

Weighted topological and measure-theoretic entropy

School of Mathematics, Sun Yat-sen University, Guangzhou 510275, China

* Corresponding author: Yu Huang

Received  May 2018 Revised  October 2018 Published  April 2019

Fund Project: The second author is supported by National Nature Science Funds of China (11771459)

Feng and Huang in 2016 defined a new notion called weighted topological entropy (pressure) and obtained the corresponding variational principle for compact dynamical systems. In this paper, it was our hope to carry out a further study from the following three aspects:

(1) Inspired from the well-known classical entropy theory, we define various weighted topological (measure-theoretic) entropies and investigate their relationships.

(2) The classical entropy formula of subsets and their transformations by factor maps is generalized to the weighted version.

(3) A formula which comes from the Brin-Katok theorem of weighted conditional entropy is established.

Citation: Tao Wang, Yu Huang. Weighted topological and measure-theoretic entropy. Discrete & Continuous Dynamical Systems - A, 2019, 39 (7) : 3941-3967. doi: 10.3934/dcds.2019159
References:
[1]

R. L. AdlerA. G. Konheim and M. H. McAndrew, Topological entropy, Trans. Amer. Math. Soc., 114 (1965), 309-319. doi: 10.1090/S0002-9947-1965-0175106-9. Google Scholar

[2]

R. Bowen, Entropy for group endomorphisms and homogeneous spaces, Trans. Amer. Math. Soc., 153 (1971), 401-414. doi: 10.1090/S0002-9947-1971-0274707-X. Google Scholar

[3]

R. Bowen, Topological entropy for noncompact sets, Trans. Amer. Math. Soc., 184 (1973), 125-136. doi: 10.1090/S0002-9947-1973-0338317-X. Google Scholar

[4]

M. Brin and A. Katok, On local entropy, in Geometric Dynamics, Rio de Janeiro, (1981), in Lecture Notes in Math., Springer, Berlin, 1007 (1983), 30–38. doi: 10.1007/BFb0061408. Google Scholar

[5]

E. I. Dinaburg, The relation between topological entropy and metric entropy, Sov. Math., 11 (1970), 13-16. Google Scholar

[6]

M. Einsiedler and T. Ward, Ergodic Theory with a View Towards Number Theory, Graduate Texts in Mathematics, 259, Springer-Verlag, London, 2011. doi: 10.1007/978-0-85729-021-2. Google Scholar

[7]

C. FangW. HuangY. Yi and P. Zhang, Dimensions of stable sets and scrambled sets in positive finite entropy systems, Ergodic Theory Dynam. Systems, 32 (2012), 599-628. doi: 10.1017/S0143385710000982. Google Scholar

[8]

D. J. Feng and W. Huang, Variational principles for topological entropies of subsets, J. Funct. Anal., 263 (2012), 2228-2254. doi: 10.1016/j.jfa.2012.07.010. Google Scholar

[9]

D. J. Feng and W. Huang, Variational principle for the weighted topological pressure, J. Math. Pures Appl., 106 (2016), 411-452. doi: 10.1016/j.matpur.2016.02.016. Google Scholar

[10]

E. Glasner, Ergodic Theory Via Joinings, Mathematical Surveys and Monographs, 101, American Mathematical Society, Providence, RI, 2003. doi: 10.1090/surv/101. Google Scholar

[11]

T. N. T. Goodman, Relating topological entropy and measure entropy, Bull. Lond. Math. Soc., 3 (1971), 176-180. doi: 10.1112/blms/3.2.176. Google Scholar

[12]

L. W. Goodwyn, Topological entropy bounds measure-theoretic entropy, Proc. Amer. Math. Soc., 23 (1969), 679-688. doi: 10.2307/2036610. Google Scholar

[13]

W. HuangX. D. Ye and G. H. Zhang, Lowering topological entropy over subsets, Ergodic Theory Dynam. Systems, 30 (2010), 181-209. doi: 10.1017/S0143385709000066. Google Scholar

[14]

A. Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms, IHES Pub., 51 (1980), 137-173. Google Scholar

[15]

A. N. Kolmogorov, A new metric invariant of transient dynamical systems and automorphisms of Lebesgue spaces, Dokl. Akad. Sci. SSSR, 119 (1958), 861-864. Google Scholar

[16]

P. Oprocha and G. H. Zhang, Dimensional entropy over sets and fibres, Nonlinearity, 24 (2011), 2325-2346. doi: 10.1088/0951-7715/24/8/009. Google Scholar

[17] Y. B. Pesin, Dimension Theory in Tynamical Systems: Contemporary views and applications, University of Chicago Press, Chicago, 1997. doi: 10.7208/chicago/9780226662237.001.0001. Google Scholar
[18]

Ya. B. Pesin and B. S. Pitskel', Topological pressure and the variational principle for noncompact sets, Funct. Anal. Appl., 18 (1984), 50-63. Google Scholar

[19]

P. Walters, An Introduction to Ergodic Theory, Springer-Verlag, New York–Berlin, 1982. Google Scholar

[20]

C. ZhaoE. C. ChenX. Y. Zhou and Z. Yin, Weighted topological entropy of the set of generic points in topological dynamical systems, J. Dynam. Differential Equations, 30 (2018), 937-955. doi: 10.1007/s10884-017-9575-5. Google Scholar

[21]

X. M. Zhou, A formula of conditional entropy and some applications, Discrete Contin. Dyn. Syst., 36 (2016), 4063-4075. doi: 10.3934/dcds.2016.36.4063. Google Scholar

show all references

References:
[1]

R. L. AdlerA. G. Konheim and M. H. McAndrew, Topological entropy, Trans. Amer. Math. Soc., 114 (1965), 309-319. doi: 10.1090/S0002-9947-1965-0175106-9. Google Scholar

[2]

R. Bowen, Entropy for group endomorphisms and homogeneous spaces, Trans. Amer. Math. Soc., 153 (1971), 401-414. doi: 10.1090/S0002-9947-1971-0274707-X. Google Scholar

[3]

R. Bowen, Topological entropy for noncompact sets, Trans. Amer. Math. Soc., 184 (1973), 125-136. doi: 10.1090/S0002-9947-1973-0338317-X. Google Scholar

[4]

M. Brin and A. Katok, On local entropy, in Geometric Dynamics, Rio de Janeiro, (1981), in Lecture Notes in Math., Springer, Berlin, 1007 (1983), 30–38. doi: 10.1007/BFb0061408. Google Scholar

[5]

E. I. Dinaburg, The relation between topological entropy and metric entropy, Sov. Math., 11 (1970), 13-16. Google Scholar

[6]

M. Einsiedler and T. Ward, Ergodic Theory with a View Towards Number Theory, Graduate Texts in Mathematics, 259, Springer-Verlag, London, 2011. doi: 10.1007/978-0-85729-021-2. Google Scholar

[7]

C. FangW. HuangY. Yi and P. Zhang, Dimensions of stable sets and scrambled sets in positive finite entropy systems, Ergodic Theory Dynam. Systems, 32 (2012), 599-628. doi: 10.1017/S0143385710000982. Google Scholar

[8]

D. J. Feng and W. Huang, Variational principles for topological entropies of subsets, J. Funct. Anal., 263 (2012), 2228-2254. doi: 10.1016/j.jfa.2012.07.010. Google Scholar

[9]

D. J. Feng and W. Huang, Variational principle for the weighted topological pressure, J. Math. Pures Appl., 106 (2016), 411-452. doi: 10.1016/j.matpur.2016.02.016. Google Scholar

[10]

E. Glasner, Ergodic Theory Via Joinings, Mathematical Surveys and Monographs, 101, American Mathematical Society, Providence, RI, 2003. doi: 10.1090/surv/101. Google Scholar

[11]

T. N. T. Goodman, Relating topological entropy and measure entropy, Bull. Lond. Math. Soc., 3 (1971), 176-180. doi: 10.1112/blms/3.2.176. Google Scholar

[12]

L. W. Goodwyn, Topological entropy bounds measure-theoretic entropy, Proc. Amer. Math. Soc., 23 (1969), 679-688. doi: 10.2307/2036610. Google Scholar

[13]

W. HuangX. D. Ye and G. H. Zhang, Lowering topological entropy over subsets, Ergodic Theory Dynam. Systems, 30 (2010), 181-209. doi: 10.1017/S0143385709000066. Google Scholar

[14]

A. Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms, IHES Pub., 51 (1980), 137-173. Google Scholar

[15]

A. N. Kolmogorov, A new metric invariant of transient dynamical systems and automorphisms of Lebesgue spaces, Dokl. Akad. Sci. SSSR, 119 (1958), 861-864. Google Scholar

[16]

P. Oprocha and G. H. Zhang, Dimensional entropy over sets and fibres, Nonlinearity, 24 (2011), 2325-2346. doi: 10.1088/0951-7715/24/8/009. Google Scholar

[17] Y. B. Pesin, Dimension Theory in Tynamical Systems: Contemporary views and applications, University of Chicago Press, Chicago, 1997. doi: 10.7208/chicago/9780226662237.001.0001. Google Scholar
[18]

Ya. B. Pesin and B. S. Pitskel', Topological pressure and the variational principle for noncompact sets, Funct. Anal. Appl., 18 (1984), 50-63. Google Scholar

[19]

P. Walters, An Introduction to Ergodic Theory, Springer-Verlag, New York–Berlin, 1982. Google Scholar

[20]

C. ZhaoE. C. ChenX. Y. Zhou and Z. Yin, Weighted topological entropy of the set of generic points in topological dynamical systems, J. Dynam. Differential Equations, 30 (2018), 937-955. doi: 10.1007/s10884-017-9575-5. Google Scholar

[21]

X. M. Zhou, A formula of conditional entropy and some applications, Discrete Contin. Dyn. Syst., 36 (2016), 4063-4075. doi: 10.3934/dcds.2016.36.4063. Google Scholar

[1]

Andrzej Biś. Entropies of a semigroup of maps. Discrete & Continuous Dynamical Systems - A, 2004, 11 (2&3) : 639-648. doi: 10.3934/dcds.2004.11.639

[2]

Vincent Giovangigli, Lionel Matuszewski. Structure of entropies in dissipative multicomponent fluids. Kinetic & Related Models, 2013, 6 (2) : 373-406. doi: 10.3934/krm.2013.6.373

[3]

Mickaël Crampon. Entropies of strictly convex projective manifolds. Journal of Modern Dynamics, 2009, 3 (4) : 511-547. doi: 10.3934/jmd.2009.3.511

[4]

Peng Sun. Measures of intermediate entropies for skew product diffeomorphisms. Discrete & Continuous Dynamical Systems - A, 2010, 27 (3) : 1219-1231. doi: 10.3934/dcds.2010.27.1219

[5]

Eduard Feireisl. Relative entropies in thermodynamics of complete fluid systems. Discrete & Continuous Dynamical Systems - A, 2012, 32 (9) : 3059-3080. doi: 10.3934/dcds.2012.32.3059

[6]

Ansgar Jüngel, Ingrid Violet. First-order entropies for the Derrida-Lebowitz-Speer-Spohn equation. Discrete & Continuous Dynamical Systems - B, 2007, 8 (4) : 861-877. doi: 10.3934/dcdsb.2007.8.861

[7]

José M. Amigó, Ángel Giménez. Formulas for the topological entropy of multimodal maps based on min-max symbols. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3415-3434. doi: 10.3934/dcdsb.2015.20.3415

[8]

Giulia Cavagnari, Antonio Marigonda. Measure-theoretic Lie brackets for nonsmooth vector fields. Discrete & Continuous Dynamical Systems - S, 2018, 11 (5) : 845-864. doi: 10.3934/dcdss.2018052

[9]

Michael Gekhtman, Michael Shapiro, Serge Tabachnikov, Alek Vainshtein. Higher pentagram maps, weighted directed networks, and cluster dynamics. Electronic Research Announcements, 2012, 19: 1-17. doi: 10.3934/era.2012.19.1

[10]

Sean Holman, Plamen Stefanov. The weighted Doppler transform. Inverse Problems & Imaging, 2010, 4 (1) : 111-130. doi: 10.3934/ipi.2010.4.111

[11]

Jin-Cheng Jiang, Chengbo Wang, Xin Yu. Generalized and weighted Strichartz estimates. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1723-1752. doi: 10.3934/cpaa.2012.11.1723

[12]

Simon Gindikin. A remark on the weighted Radon transform on the plane. Inverse Problems & Imaging, 2010, 4 (4) : 649-653. doi: 10.3934/ipi.2010.4.649

[13]

Tim McGraw, Baba Vemuri, Evren Özarslan, Yunmei Chen, Thomas Mareci. Variational denoising of diffusion weighted MRI. Inverse Problems & Imaging, 2009, 3 (4) : 625-648. doi: 10.3934/ipi.2009.3.625

[14]

Ronan Costaouec, Haoyun Feng, Jesús Izaguirre, Eric Darve. Analysis of the accelerated weighted ensemble methodology. Conference Publications, 2013, 2013 (special) : 171-181. doi: 10.3934/proc.2013.2013.171

[15]

Igor E. Pritsker and Richard S. Varga. Weighted polynomial approximation in the complex plane. Electronic Research Announcements, 1997, 3: 38-44.

[16]

Tahar Z. Boulmezaoud, Amel Kourta. Some identities on weighted Sobolev spaces. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 427-434. doi: 10.3934/dcdss.2012.5.427

[17]

Matteo Bonforte, Jean Dolbeault, Matteo Muratori, Bruno Nazaret. Weighted fast diffusion equations (Part Ⅱ): Sharp asymptotic rates of convergence in relative error by entropy methods. Kinetic & Related Models, 2017, 10 (1) : 61-91. doi: 10.3934/krm.2017003

[18]

Raffaela Capitanelli, Maria Agostina Vivaldi. Uniform weighted estimates on pre-fractal domains. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1969-1985. doi: 10.3934/dcdsb.2014.19.1969

[19]

Qichun Wang, Chik How Tan, Pantelimon Stănică. Concatenations of the hidden weighted bit function and their cryptographic properties. Advances in Mathematics of Communications, 2014, 8 (2) : 153-165. doi: 10.3934/amc.2014.8.153

[20]

Claudia Anedda, Giovanni Porru. Boundary estimates for solutions of weighted semilinear elliptic equations. Discrete & Continuous Dynamical Systems - A, 2012, 32 (11) : 3801-3817. doi: 10.3934/dcds.2012.32.3801

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (59)
  • HTML views (129)
  • Cited by (0)

Other articles
by authors

[Back to Top]