July  2019, 39(7): 4073-4089. doi: 10.3934/dcds.2019164

On the oscillation behavior of solutions to the one-dimensional heat equation

1. 

Department of Mathematics, National Tsing Hua University, Hsinchu 30013, Taiwan

2. 

Department of Financial Engineering, Providence University, Taichung 43301, Taiwan

Received  September 2018 Published  April 2019

We study the oscillation behavior of solutions to the one-dimensional heat equation and give some interesting examples. We also demonstrate a simple ODE method to find explicit solutions of the heat equation with certain particular initial conditions.

Citation: Dong-Ho Tsai, Chia-Hsing Nien. On the oscillation behavior of solutions to the one-dimensional heat equation. Discrete & Continuous Dynamical Systems - A, 2019, 39 (7) : 4073-4089. doi: 10.3934/dcds.2019164
References:
[1]

P. Collet and J. -P. Eckmann, Space-time behavior in problems of hydrodynamic type: A case study, Nonlinearity, 5 (1992), 1265-1302.  doi: 10.1088/0951-7715/5/6/004.  Google Scholar

[2]

S. D. Eidel'man, Parabolic System, North-Holland, Amsterdam, 1969. Google Scholar

[3]

S. Kamin, On stabilization of solutions of the Cauchy problem for parabolic equations, Proc. Roy. Soc. Edinburgh Sect. A, 76/77 (1976), 43-53.  doi: 10.1017/S0308210500019478.  Google Scholar

[4]

M. Nara and M. Taniguchi, The condition on the stability of stationary lines in a curvature flow in the whole plane, J. Diff. Eq., 237 (2007), 61-76.  doi: 10.1016/j.jde.2007.02.012.  Google Scholar

[5]

W.-M. Ni, The Mathematics of Diffusion, CBMS-NSF Regional Conference Series in Applied Mathematics, v. 82, SIAM, 2011. doi: 10.1137/1.9781611971972.  Google Scholar

[6]

V. D. Repnikov and S. D. Eidel'man, A new proof of the theorem on the stabilization of the solution of the Cauchy problem for the heat equation, Math. USSR Sb., 2 (1967), 135-139.  doi: 10.1070/SM1967v002n01ABEH002328.  Google Scholar

show all references

References:
[1]

P. Collet and J. -P. Eckmann, Space-time behavior in problems of hydrodynamic type: A case study, Nonlinearity, 5 (1992), 1265-1302.  doi: 10.1088/0951-7715/5/6/004.  Google Scholar

[2]

S. D. Eidel'man, Parabolic System, North-Holland, Amsterdam, 1969. Google Scholar

[3]

S. Kamin, On stabilization of solutions of the Cauchy problem for parabolic equations, Proc. Roy. Soc. Edinburgh Sect. A, 76/77 (1976), 43-53.  doi: 10.1017/S0308210500019478.  Google Scholar

[4]

M. Nara and M. Taniguchi, The condition on the stability of stationary lines in a curvature flow in the whole plane, J. Diff. Eq., 237 (2007), 61-76.  doi: 10.1016/j.jde.2007.02.012.  Google Scholar

[5]

W.-M. Ni, The Mathematics of Diffusion, CBMS-NSF Regional Conference Series in Applied Mathematics, v. 82, SIAM, 2011. doi: 10.1137/1.9781611971972.  Google Scholar

[6]

V. D. Repnikov and S. D. Eidel'man, A new proof of the theorem on the stabilization of the solution of the Cauchy problem for the heat equation, Math. USSR Sb., 2 (1967), 135-139.  doi: 10.1070/SM1967v002n01ABEH002328.  Google Scholar

[1]

Dong-Ho Tsai, Chia-Hsing Nien. On space-time periodic solutions of the one-dimensional heat equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3997-4017. doi: 10.3934/dcds.2020037

[2]

Yi Zhou, Jianli Liu. The initial-boundary value problem on a strip for the equation of time-like extremal surfaces. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 381-397. doi: 10.3934/dcds.2009.23.381

[3]

Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020354

[4]

Amru Hussein, Martin Saal, Marc Wrona. Primitive equations with horizontal viscosity: The initial value and The time-periodic problem for physical boundary conditions. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020398

[5]

Vo Van Au, Hossein Jafari, Zakia Hammouch, Nguyen Huy Tuan. On a final value problem for a nonlinear fractional pseudo-parabolic equation. Electronic Research Archive, 2021, 29 (1) : 1709-1734. doi: 10.3934/era.2020088

[6]

Anton A. Kutsenko. Isomorphism between one-dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, 2021, 20 (1) : 359-368. doi: 10.3934/cpaa.2020270

[7]

Mikhail I. Belishev, Sergey A. Simonov. A canonical model of the one-dimensional dynamical Dirac system with boundary control. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021003

[8]

Haruki Umakoshi. A semilinear heat equation with initial data in negative Sobolev spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 745-767. doi: 10.3934/dcdss.2020365

[9]

Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020108

[10]

Guoliang Zhang, Shaoqin Zheng, Tao Xiong. A conservative semi-Lagrangian finite difference WENO scheme based on exponential integrator for one-dimensional scalar nonlinear hyperbolic equations. Electronic Research Archive, 2021, 29 (1) : 1819-1839. doi: 10.3934/era.2020093

[11]

Chueh-Hsin Chang, Chiun-Chuan Chen, Chih-Chiang Huang. Traveling wave solutions of a free boundary problem with latent heat effect. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021028

[12]

Nguyen Huu Can, Nguyen Huy Tuan, Donal O'Regan, Vo Van Au. On a final value problem for a class of nonlinear hyperbolic equations with damping term. Evolution Equations & Control Theory, 2021, 10 (1) : 103-127. doi: 10.3934/eect.2020053

[13]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[14]

Yunfeng Jia, Yi Li, Jianhua Wu, Hong-Kun Xu. Cauchy problem of semilinear inhomogeneous elliptic equations of Matukuma-type with multiple growth terms. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3485-3507. doi: 10.3934/dcds.2019227

[15]

Pengyu Chen, Yongxiang Li, Xuping Zhang. Cauchy problem for stochastic non-autonomous evolution equations governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1531-1547. doi: 10.3934/dcdsb.2020171

[16]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[17]

Jean-Claude Saut, Yuexun Wang. Long time behavior of the fractional Korteweg-de Vries equation with cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1133-1155. doi: 10.3934/dcds.2020312

[18]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[19]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[20]

Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (147)
  • HTML views (155)
  • Cited by (1)

Other articles
by authors

[Back to Top]