We study stability and separation property of solutions to Hénontype equations. In particular, assuming separation property of radial solutions, we shall show the stability of solutions. Moreover, we shall also study those properties of solutions to generalized Eddington equations.
Citation: |
[1] |
M. Badiale and G. Tarantello, A Sobolev-Hardy inequality with applications to a nonlinear elliptic equation arising in astrophysics, Arch. Ration. Mech. Anal., 163 (2002), 259-293.
doi: 10.1007/s002050200201.![]() ![]() ![]() |
[2] |
S. Bae, Separation structure of positive radial solutions of a semilinear elliptic equation in $ \mathbb{R}^{n}$, J. Differential Equations, 194 (2003), 460-499.
doi: 10.1016/S0022-0396(03)00172-4.![]() ![]() ![]() |
[3] |
S. Bae, Infinite multiplicity and separation structure of positive solutions for a semilinear elliptic equation in $ \mathbb{R}^{n}$, J. Differential Equations, 200 (2004), 274-311.
doi: 10.1016/j.jde.2003.11.006.![]() ![]() ![]() |
[4] |
S. Bae, Positive entire solutions of semilinear elliptic equations with quadratically vanishing coefficient, J. Differential Equations, 237 (2007), 159-197.
doi: 10.1016/j.jde.2007.03.003.![]() ![]() ![]() |
[5] |
S. Bae, Entire solutions with asymptotic self-similarity for elliptic equations with exponential nonlinearity, J. Math. Anal. Appl., 428 (2015), 1085-1116.
doi: 10.1016/j.jmaa.2015.03.036.![]() ![]() ![]() |
[6] |
S. Bae and T.-K. Chang, On a class of semilinear elliptic equations in $ \mathbb{R}^{n}$, J. Differential Equations, 185 (2002), 225-250.
doi: 10.1006/jdeq.2001.4162.![]() ![]() ![]() |
[7] |
S. Bae and Y. Naito, Existence and separation of positive radial solutions for semilinear elliptic equations, J. Differential Equations, 257 (2014), 2430-2463.
doi: 10.1016/j.jde.2014.05.042.![]() ![]() ![]() |
[8] |
S. Bae and Y. Naito, Separation structure of radial solutions for semilinear elliptic equations with exponential nonlinearity, Discrete Contin. Dyn. Syst., 38 (2018), 4537-4554.
doi: 10.3934/dcds.2018198.![]() ![]() ![]() |
[9] |
C. Chen and H. Wang, Liouville theorems for the weighted Lane-Emden equation with finite Morse indices, Math. Methods Appl. Sci., 40 (2017), 4674-4682.
![]() ![]() |
[10] |
E. N. Dancer, Y. Du and Z. Guo, Finite Morse index solutions of an elliptic equation with supercritical exponent, J. Differential Equations, 250 (2011), 3281-3310.
doi: 10.1016/j.jde.2011.02.005.![]() ![]() ![]() |
[11] |
Y. Deng, Y. Li and F. Yang, On the positive radial solutions of a class of singular semilinear elliptic equations, J. Differential Equations, 253 (2012), 481-501.
doi: 10.1016/j.jde.2012.02.017.![]() ![]() ![]() |
[12] |
L. Dupaigne and A. Farina, Stable solutions of $-\Delta u = f(u)$ in $ \mathbb{R}^{N}$, J. Eur. Math. Soc. (JEMS), 12 (2010), 855-882.
doi: 10.4171/JEMS/217.![]() ![]() ![]() |
[13] |
A. Farina, On the classification of solutions of the Lane-Emden equation on unbounded domains of $ \mathbb{R}^{N}$, J. Math. Pures Appl. (9), 87 (2007), 537-561.
doi: 10.1016/j.matpur.2007.03.001.![]() ![]() ![]() |
[14] |
A. Farina, Stable solutions of $-\Delta u = e^{u}$ on $ \mathbb{R}^{N}$, C. R. Math. Acad. Sci. Paris, 345 (2007), 63-66.
doi: 10.1016/j.crma.2007.05.021.![]() ![]() ![]() |
[15] |
A. Farina, Some symmetry results and Liouville-type theorems for solutions to semilinear equations, Nonlinear Anal., 121 (2015), 223-229.
doi: 10.1016/j.na.2015.02.004.![]() ![]() ![]() |
[16] |
A. Farina, B. Sciunzi and E. Valdinoci, Bernstein and De Giorgi type problems: New results via a geometric approach, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 7 (2008), 741-791.
![]() ![]() |
[17] |
C. Gui, Positive entire solutions of the equation $\Delta u+f(x,u) = 0$, J. Differential Equations, 99 (1992), 245-280.
doi: 10.1016/0022-0396(92)90023-G.![]() ![]() ![]() |
[18] |
C. Gui, K.-M. Ni and X. Wang, On the stability and instability of positive steady states of a semilinear heat equation in $ \mathbb{R}^{n}$, Comm. Pure Appl. Math., 45 (1992), 1153-1181.
doi: 10.1002/cpa.3160450906.![]() ![]() ![]() |
[19] |
C. Gui, K.-M. Ni and X. Wang, Further study on a nonlinear heat equation, J. Differential Equations, 169 (2001), 588-613.
doi: 10.1006/jdeq.2000.3909.![]() ![]() ![]() |
[20] |
H. Hajlaoui, A. Harrabi and F. Mtiri, Liouville theorems for stable solutions of the weighted Lane-Emden system, Discrete Contin. Dyn. Syst., 37 (2017), 265-279.
doi: 10.3934/dcds.2017011.![]() ![]() ![]() |
[21] |
D. D. Joseph and T. S. Lundgren, Quasilinear Dirichlet problems driven by positive sources, Arch. Rational Mech. Anal., 49 (1972/73), 241-269.
doi: 10.1007/BF00250508.![]() ![]() ![]() |
[22] |
Y. Li, Asymptotic behavior of positive solutions of equation $\Delta u+K(x)u^{p} = 0$ in $ \mathbb{R}^{N}$, J. Differential Equations, 95 (1992), 304-330.
doi: 10.1016/0022-0396(92)90034-K.![]() ![]() ![]() |
[23] |
Y. Li, On the positive solutions of the Matukuma equation, Duke Math. J., 70 (1993), 575-589.
doi: 10.1215/S0012-7094-93-07012-3.![]() ![]() ![]() |
[24] |
Y. Liu, Y. Li and Y. Deng, Separation property of solutions for a semilinear elliptic equation, J. Differential Equations, 163 (2000), 381-406.
doi: 10.1006/jdeq.1999.3735.![]() ![]() ![]() |
[25] |
Y. Miyamoto, Intersection properties of radial solutions and global bifurcation diagrams for supercritical quasilinear elliptic equations, NoDEA Nonlinear Differential Equations Appl., 23 (2016), Art. 16, 24 pp.
doi: 10.1007/s00030-016-0359-0.![]() ![]() ![]() |
[26] |
Y. Miyamoto and K. Takahashi, Generalized Joseph-Lundgren exponent and intersection properties for supercritical quasilinear elliptic equations, Arch. Math. (Basel), 108 (2017), 71-83.
doi: 10.1007/s00013-016-0969-0.![]() ![]() ![]() |
[27] |
W.-M. Ni and S. Yotsutani, On Matukuma's equation and related topics, Proc. Japan Acad. Ser. A Math. Sci., 62 (1986), 260-263.
doi: 10.3792/pjaa.62.260.![]() ![]() ![]() |
[28] |
W.-M. Ni and S. Yotsutani, Semilinear elliptic equations of Matukuma-type and related topics, Japan J. Appl. Math., 5 (1988), 1-32.
doi: 10.1007/BF03167899.![]() ![]() ![]() |
[29] |
J. I. Tello, Stability of steady states of the Cauchy problem for the exponential reaction-diffusion equation, J. Math. Anal. Appl., 324 (2006), 381-396.
doi: 10.1016/j.jmaa.2005.12.011.![]() ![]() ![]() |
[30] |
S. Villegas, Asymptotic behavior of stable radial solutions of semilinear elliptic equations in $ \mathbb{R}^{N}$, J. Math. Pures Appl. (9), 88 (2007), 241-250.
doi: 10.1016/j.matpur.2007.06.004.![]() ![]() ![]() |
[31] |
X. Wang, On the Cauchy problem for reaction-diffusion equations, Trans. Amer. Math. Soc., 337 (1993), 549-590.
doi: 10.1090/S0002-9947-1993-1153016-5.![]() ![]() ![]() |
[32] |
E. Yanagida, Structure of radial solutions to $\Delta u+K(|x|)|u|^{p-1}u=0$ in $ \mathbb{R}^{N}$, SIAM J. Math. Anal., 27 (1996), 997-1014.
doi: 10.1137/0527053.![]() ![]() ![]() |