• Previous Article
    A polygonal scheme and the lower bound on density for the isentropic gas dynamics
  • DCDS Home
  • This Issue
  • Next Article
    Equality of Kolmogorov-Sinai and permutation entropy for one-dimensional maps consisting of countably many monotone parts
July  2019, 39(7): 4225-4257. doi: 10.3934/dcds.2019171

On the existence of invariant tori in non-conservative dynamical systems with degeneracy and finite differentiability

1. 

Key Laboratory of High Performance Computing and Stochastic Information Processing, Department of Mathematics, Hunan Normal University, Changsha, Hunan 410081, China

2. 

HLM, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China

* Corresponding author: Xuemei Li

Received  November 2018 Published  April 2019

Fund Project: This work is supported by the NNSF (11371132, 11671392) of China.

In this paper, we establish a KAM-theorem about the existenceof invariant tori in non-conservative dynamical systems with finitely differentiable vector fields and multiple degeneracies under the assumption that theintegrable part is finitely differentiable with respect to parameters, instead ofthe usual assumption of analyticity. We prove these results by constructingapproximation and inverse approximation lemmas in which all functions arefinitely differentiable in parameters.

Citation: Xuemei Li, Zaijiu Shang. On the existence of invariant tori in non-conservative dynamical systems with degeneracy and finite differentiability. Discrete & Continuous Dynamical Systems - A, 2019, 39 (7) : 4225-4257. doi: 10.3934/dcds.2019171
References:
[1]

J. Albrecht, On the existence of invariant tori in nearly integrable Hamiltonian systems with finitely differentiable perturbations, Regul. Chaotic Dyn., 12 (2007), 281-320.  doi: 10.1134/S1560354707030033.  Google Scholar

[2]

V. I. Arnol'd, Proof of a theorem by A. N. Kolmogorov on the invariance of quasi periodic motions under small perturbations of the Hamiltonian, Russian Math. Survey, 18 (1963), 9-36.   Google Scholar

[3]

V. I. Arnol'd, Small divisor problems in classical and celestial mechanics, Russian Math. Survey, 18 (1963), 85-191.   Google Scholar

[4]

D. BambusiM. Berti and E. Magistrelli, Degenerate KAM theory for partial differential equations, J. Differential Equations, 250 (2011), 3379-3397.  doi: 10.1016/j.jde.2010.11.002.  Google Scholar

[5]

D. Bambusi and G. Gaeta, Invariant tori for non-conservative perturbations of integrable systems, NoDEA Nonlinear Differ. Equ. Appl., 8 (2001), 99-116.  doi: 10.1007/PL00001441.  Google Scholar

[6]

N. N. Bogoljubov, Ju. A. Mitropolskii and A. M. Samoilenko, Methods of Accelerated Convergence in Nonlinear Mechanics, Springer, Berlin, 1976.  Google Scholar

[7]

H. W. Broer, G. B. Huitema and M. B. Sevryuk, Quasi-periodic Motions in Families of Dynamical Systems: Order amidst Chaos, , Lecture Notes in Math., Springer, Berlin, 1996.  Google Scholar

[8]

A. D. Bruno, On conditions for nondegeneracy in Kolmogorov's theorem, Soviet Math. Dokl., 45 (1992), 221-225.   Google Scholar

[9]

C.-Q. Cheng and Y. Sun, Existence of KAM tori in degenerate Hamiltonian systems, J. Differential Equations, 114 (1994), 288-335.  doi: 10.1006/jdeq.1994.1152.  Google Scholar

[10]

C.-Q. Cheng and S. Wang, The surviving of lower dimensional tori from a resonant torus of Hamiltonian systems, J. Differential Equations, 155 (1999), 311-326.  doi: 10.1006/jdeq.1998.3586.  Google Scholar

[11]

L. Chierchia, KAM Lectures, Dynamical Systems, Pubbl. Cent. Ric. Mat. Ennio Giorgi, Sc. Norm. Sup., Pisa, Part Ⅰ: (2003), 1–55.  Google Scholar

[12]

L. Chierchia and G. Pinzari, Properly degenerate KAM theory (following V. I. Arnold), Discrete. Contin. Dyn. Syst. S, 3 (2010), 545-578.  doi: 10.3934/dcdss.2010.3.545.  Google Scholar

[13]

L. Chierchia and D. Qian, Moser's theorem for lower dimensional tori, J. Differential Equations, 206 (2004), 55-93.  doi: 10.1016/j.jde.2004.06.014.  Google Scholar

[14]

J. Féjoz, Dèmonstration du `théorème d'Arnold' sur la stabilité du système planétaire (d'après Herman), Ergodic Theory Dyn. Syst., 24 (2004), 1521-1582.  doi: 10.1017/S0143385704000410.  Google Scholar

[15]

G. Gentile, Degenerate lower-dimensional tori under the Bryuno condition, Ergodic Theory Dyn. Syst., 27 (2007), 427-457.  doi: 10.1017/S0143385706000757.  Google Scholar

[16]

G. Gentile and G. Gallavotti, Degenerate elliptic resonances, Comm. Math. Phys., 257 (2005), 319-362.  doi: 10.1007/s00220-005-1325-6.  Google Scholar

[17]

Y. HanY. Li and Y. Yi, Degenerate lower-dimensional tori in Hamiltonian systems, J. Differential Equations, 227 (2006), 670-691.  doi: 10.1016/j.jde.2006.02.006.  Google Scholar

[18]

Y. HanY. Li and Y. Yi, Invariant tori in Hamiltonian systems with high order proper degeneracy, Ann. Henri Poincaré, 10 (2010), 1419-1436.  doi: 10.1007/s00023-010-0026-7.  Google Scholar

[19]

M. R. Herman, Sur les courbes invariantes par les difféomorphismes de l'anneau, Vol. 1.Astérisque, 103 (1983), i+221pp.  Google Scholar

[20]

X. Li, On the persistence of quasi-periodic invariant tori for double Hopf bifurcation of vector fields, J. Differential Equations, 260 (2016), 7320-7357.  doi: 10.1016/j.jde.2016.01.025.  Google Scholar

[21]

X. Li and R. de la Llave, Convergence of differentiable functions on closed sets and remarks on the proofs of the "converse approximation lemmas", Discrete Contin. Dyn. Syst. S, 3 (2010), 623-641.  doi: 10.3934/dcdss.2010.3.623.  Google Scholar

[22]

X. Li and X. Yuan, Quasi-periodic solutions for perturbed autonomous delay differential equations, J. Differential Equations, 252 (2012), 3752-3796.  doi: 10.1016/j.jde.2011.11.014.  Google Scholar

[23]

Y. Li and Y. Yi, A quasi-periodic Poincare's theorem, Math. Ann., 326 (2003), 649-690.  doi: 10.1007/s00208-002-0399-0.  Google Scholar

[24]

J. Moser, On invariant curves of area-preserving mappings of an annulus, Nach. Akad. Wiss. Göttingen, Ⅱ Math. Phys. KI, 1962 (1962), 1-20.   Google Scholar

[25]

J. Moser, A rapidly convergent iteration method and nonlinear partial differential equations Ⅰ and Ⅱ, Ann. Scuola Norm. Sup. Pisa(3), 20 (1966), 265-315.   Google Scholar

[26]

J. Moser, Convergent series expansions for quasi-periodic motions, Math. Ann., 169 (1967), 136-176.  doi: 10.1007/BF01399536.  Google Scholar

[27]

J. Pöschel, Integrability of Hamiltonian systems on Cantor sets, Commun. Pure Appl. Math., 35 (1982), 653-696.  doi: 10.1002/cpa.3160350504.  Google Scholar

[28]

J. Pöschel, A KAM-theorem for some nonlinear partial differential equations, Ann. Sc. Norm. Sup. Pisa, 23 (1996), 119-148.   Google Scholar

[29]

J. Pöschel, A lecture on the classical KAM theorem, Proc. Symp. Pure Math., 69 (2001), 707-732.  doi: 10.1090/pspum/069/1858551.  Google Scholar

[30]

H. Rüssmann, Kleine Nenner I: Über invariante Kurven differenzierbarer Abbildungen eines Kreisringes, Nach. Akad. Wiss. Göttingen, Ⅱ Math. Phys. KI., 1970 (1970), 67-105.   Google Scholar

[31]

H. Rüssmann, On optimal estimates for the solutions of linear partial differential equations of first order with constant coefficients on the torus, Lecture Notes in Phys., Springer, Berlin, 38 (1975), 598–624.  Google Scholar

[32]

H. Rüssmann, On the existence of invariant curves of twist mappings of an annulus, Lecture Notes in Math., Springer, Berlin, 1007 (1983), 677–718. doi: 10.1007/BFb0061441.  Google Scholar

[33]

H. Rüssmann, Nondegeneracy in the perturbation theory of integrable dynamical systems, London Math. Soc. Lecture Note Ser., 134 (1989), 5-18.  doi: 10.1017/CBO9780511661983.002.  Google Scholar

[34]

H. Rüssmann, Invariant tori in non-degenerate nearly integrable Hamiltonian systems, Regul. Chaotic Dyn., 6 (2001), 119-204.  doi: 10.1070/RD2001v006n02ABEH000169.  Google Scholar

[35]

Z. Shang, A note on the KAM theorem for symplectic mappings, J. Dyn. Diff. Eqs., 12 (2000), 357-383.  doi: 10.1023/A:1009068425415.  Google Scholar

[36]

C. L. Siegel, Verlesungen über Himmelsmechanik, Springer, 1956.  Google Scholar

[37] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Math. Series, No. 30, Princeton University Press, 1970.   Google Scholar
[38]

F. Wagener, A parameterised version of Moser's modifying terms theorem, Discrete Contin. Dyn. Syst. S, 3 (2010), 719-768.  doi: 10.3934/dcdss.2010.3.719.  Google Scholar

[39]

H. Whitney, Analytic extensions of differentiable functions defined in closed sets, Trans. Amer. Math. Soc., 36 (1934), 63-89.  doi: 10.1090/S0002-9947-1934-1501735-3.  Google Scholar

[40]

E. Zehnder, Generalized implicit function theorems with applications to some small divisor problems Ⅰ and Ⅱ, Comm. Pure Appl. Math., textbf29 (1975), 91–140 and 29 (1976), 49–111. doi: 10.1002/cpa.3160290104.  Google Scholar

show all references

References:
[1]

J. Albrecht, On the existence of invariant tori in nearly integrable Hamiltonian systems with finitely differentiable perturbations, Regul. Chaotic Dyn., 12 (2007), 281-320.  doi: 10.1134/S1560354707030033.  Google Scholar

[2]

V. I. Arnol'd, Proof of a theorem by A. N. Kolmogorov on the invariance of quasi periodic motions under small perturbations of the Hamiltonian, Russian Math. Survey, 18 (1963), 9-36.   Google Scholar

[3]

V. I. Arnol'd, Small divisor problems in classical and celestial mechanics, Russian Math. Survey, 18 (1963), 85-191.   Google Scholar

[4]

D. BambusiM. Berti and E. Magistrelli, Degenerate KAM theory for partial differential equations, J. Differential Equations, 250 (2011), 3379-3397.  doi: 10.1016/j.jde.2010.11.002.  Google Scholar

[5]

D. Bambusi and G. Gaeta, Invariant tori for non-conservative perturbations of integrable systems, NoDEA Nonlinear Differ. Equ. Appl., 8 (2001), 99-116.  doi: 10.1007/PL00001441.  Google Scholar

[6]

N. N. Bogoljubov, Ju. A. Mitropolskii and A. M. Samoilenko, Methods of Accelerated Convergence in Nonlinear Mechanics, Springer, Berlin, 1976.  Google Scholar

[7]

H. W. Broer, G. B. Huitema and M. B. Sevryuk, Quasi-periodic Motions in Families of Dynamical Systems: Order amidst Chaos, , Lecture Notes in Math., Springer, Berlin, 1996.  Google Scholar

[8]

A. D. Bruno, On conditions for nondegeneracy in Kolmogorov's theorem, Soviet Math. Dokl., 45 (1992), 221-225.   Google Scholar

[9]

C.-Q. Cheng and Y. Sun, Existence of KAM tori in degenerate Hamiltonian systems, J. Differential Equations, 114 (1994), 288-335.  doi: 10.1006/jdeq.1994.1152.  Google Scholar

[10]

C.-Q. Cheng and S. Wang, The surviving of lower dimensional tori from a resonant torus of Hamiltonian systems, J. Differential Equations, 155 (1999), 311-326.  doi: 10.1006/jdeq.1998.3586.  Google Scholar

[11]

L. Chierchia, KAM Lectures, Dynamical Systems, Pubbl. Cent. Ric. Mat. Ennio Giorgi, Sc. Norm. Sup., Pisa, Part Ⅰ: (2003), 1–55.  Google Scholar

[12]

L. Chierchia and G. Pinzari, Properly degenerate KAM theory (following V. I. Arnold), Discrete. Contin. Dyn. Syst. S, 3 (2010), 545-578.  doi: 10.3934/dcdss.2010.3.545.  Google Scholar

[13]

L. Chierchia and D. Qian, Moser's theorem for lower dimensional tori, J. Differential Equations, 206 (2004), 55-93.  doi: 10.1016/j.jde.2004.06.014.  Google Scholar

[14]

J. Féjoz, Dèmonstration du `théorème d'Arnold' sur la stabilité du système planétaire (d'après Herman), Ergodic Theory Dyn. Syst., 24 (2004), 1521-1582.  doi: 10.1017/S0143385704000410.  Google Scholar

[15]

G. Gentile, Degenerate lower-dimensional tori under the Bryuno condition, Ergodic Theory Dyn. Syst., 27 (2007), 427-457.  doi: 10.1017/S0143385706000757.  Google Scholar

[16]

G. Gentile and G. Gallavotti, Degenerate elliptic resonances, Comm. Math. Phys., 257 (2005), 319-362.  doi: 10.1007/s00220-005-1325-6.  Google Scholar

[17]

Y. HanY. Li and Y. Yi, Degenerate lower-dimensional tori in Hamiltonian systems, J. Differential Equations, 227 (2006), 670-691.  doi: 10.1016/j.jde.2006.02.006.  Google Scholar

[18]

Y. HanY. Li and Y. Yi, Invariant tori in Hamiltonian systems with high order proper degeneracy, Ann. Henri Poincaré, 10 (2010), 1419-1436.  doi: 10.1007/s00023-010-0026-7.  Google Scholar

[19]

M. R. Herman, Sur les courbes invariantes par les difféomorphismes de l'anneau, Vol. 1.Astérisque, 103 (1983), i+221pp.  Google Scholar

[20]

X. Li, On the persistence of quasi-periodic invariant tori for double Hopf bifurcation of vector fields, J. Differential Equations, 260 (2016), 7320-7357.  doi: 10.1016/j.jde.2016.01.025.  Google Scholar

[21]

X. Li and R. de la Llave, Convergence of differentiable functions on closed sets and remarks on the proofs of the "converse approximation lemmas", Discrete Contin. Dyn. Syst. S, 3 (2010), 623-641.  doi: 10.3934/dcdss.2010.3.623.  Google Scholar

[22]

X. Li and X. Yuan, Quasi-periodic solutions for perturbed autonomous delay differential equations, J. Differential Equations, 252 (2012), 3752-3796.  doi: 10.1016/j.jde.2011.11.014.  Google Scholar

[23]

Y. Li and Y. Yi, A quasi-periodic Poincare's theorem, Math. Ann., 326 (2003), 649-690.  doi: 10.1007/s00208-002-0399-0.  Google Scholar

[24]

J. Moser, On invariant curves of area-preserving mappings of an annulus, Nach. Akad. Wiss. Göttingen, Ⅱ Math. Phys. KI, 1962 (1962), 1-20.   Google Scholar

[25]

J. Moser, A rapidly convergent iteration method and nonlinear partial differential equations Ⅰ and Ⅱ, Ann. Scuola Norm. Sup. Pisa(3), 20 (1966), 265-315.   Google Scholar

[26]

J. Moser, Convergent series expansions for quasi-periodic motions, Math. Ann., 169 (1967), 136-176.  doi: 10.1007/BF01399536.  Google Scholar

[27]

J. Pöschel, Integrability of Hamiltonian systems on Cantor sets, Commun. Pure Appl. Math., 35 (1982), 653-696.  doi: 10.1002/cpa.3160350504.  Google Scholar

[28]

J. Pöschel, A KAM-theorem for some nonlinear partial differential equations, Ann. Sc. Norm. Sup. Pisa, 23 (1996), 119-148.   Google Scholar

[29]

J. Pöschel, A lecture on the classical KAM theorem, Proc. Symp. Pure Math., 69 (2001), 707-732.  doi: 10.1090/pspum/069/1858551.  Google Scholar

[30]

H. Rüssmann, Kleine Nenner I: Über invariante Kurven differenzierbarer Abbildungen eines Kreisringes, Nach. Akad. Wiss. Göttingen, Ⅱ Math. Phys. KI., 1970 (1970), 67-105.   Google Scholar

[31]

H. Rüssmann, On optimal estimates for the solutions of linear partial differential equations of first order with constant coefficients on the torus, Lecture Notes in Phys., Springer, Berlin, 38 (1975), 598–624.  Google Scholar

[32]

H. Rüssmann, On the existence of invariant curves of twist mappings of an annulus, Lecture Notes in Math., Springer, Berlin, 1007 (1983), 677–718. doi: 10.1007/BFb0061441.  Google Scholar

[33]

H. Rüssmann, Nondegeneracy in the perturbation theory of integrable dynamical systems, London Math. Soc. Lecture Note Ser., 134 (1989), 5-18.  doi: 10.1017/CBO9780511661983.002.  Google Scholar

[34]

H. Rüssmann, Invariant tori in non-degenerate nearly integrable Hamiltonian systems, Regul. Chaotic Dyn., 6 (2001), 119-204.  doi: 10.1070/RD2001v006n02ABEH000169.  Google Scholar

[35]

Z. Shang, A note on the KAM theorem for symplectic mappings, J. Dyn. Diff. Eqs., 12 (2000), 357-383.  doi: 10.1023/A:1009068425415.  Google Scholar

[36]

C. L. Siegel, Verlesungen über Himmelsmechanik, Springer, 1956.  Google Scholar

[37] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Math. Series, No. 30, Princeton University Press, 1970.   Google Scholar
[38]

F. Wagener, A parameterised version of Moser's modifying terms theorem, Discrete Contin. Dyn. Syst. S, 3 (2010), 719-768.  doi: 10.3934/dcdss.2010.3.719.  Google Scholar

[39]

H. Whitney, Analytic extensions of differentiable functions defined in closed sets, Trans. Amer. Math. Soc., 36 (1934), 63-89.  doi: 10.1090/S0002-9947-1934-1501735-3.  Google Scholar

[40]

E. Zehnder, Generalized implicit function theorems with applications to some small divisor problems Ⅰ and Ⅱ, Comm. Pure Appl. Math., textbf29 (1975), 91–140 and 29 (1976), 49–111. doi: 10.1002/cpa.3160290104.  Google Scholar

[1]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[2]

Meng Chen, Yong Hu, Matteo Penegini. On projective threefolds of general type with small positive geometric genus. Electronic Research Archive, , () : -. doi: 10.3934/era.2020117

[3]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[4]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[5]

Anton A. Kutsenko. Isomorphism between one-Dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020270

[6]

Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120

[7]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[8]

Wenjun Liu, Yukun Xiao, Xiaoqing Yue. Classification of finite irreducible conformal modules over Lie conformal algebra $ \mathcal{W}(a, b, r) $. Electronic Research Archive, , () : -. doi: 10.3934/era.2020123

[9]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (103)
  • HTML views (191)
  • Cited by (3)

Other articles
by authors

[Back to Top]