
-
Previous Article
The semirelativistic Choquard equation with a local nonlinear term
- DCDS Home
- This Issue
-
Next Article
On the existence of invariant tori in non-conservative dynamical systems with degeneracy and finite differentiability
A polygonal scheme and the lower bound on density for the isentropic gas dynamics
1. | Department of Mathematics, University of Kansas, Lawrence, KS 66045, USA |
2. | School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332, USA |
3. | Mathematical Institute, University of Oxford, Oxford, OX2 6GG, UK |
Positive density lower bound is one of the major obstacles toward large data theory for one dimensional isentropic compressible Euler equations, also known as p-system in Lagrangian coordinates. The explicit example first studied by Riemann shows that the lower bound of density can decay to zero as time goes to infinity of the order $ O\left( {\frac{1}{{1 + t}}} \right)$, even when initial density is uniformly positive. In this paper, we establish a proof of the lower bound on density in its optimal order $ O\left( {\frac{1}{{1 + t}}} \right)$ using a method of polygonal scheme.
References:
[1] |
A. Bressan, Hyperbolic Systems of Conservation Laws: The 1-Dimensional Cauchy Problem, Oxford Univ. Press, Oxford, 2000.
![]() |
[2] |
A. Bressan, G. Chen and Q. Zhang,
Lack of BV bounds for approximate solutions to the $p$-system with large data, J. Differential Equations, 256 (2014), 3067-3085.
doi: 10.1016/j.jde.2014.01.032. |
[3] |
T. Chang and L. Hsiao, The Riemann Problem and Interaction of Waves in Gas Dynamics, Pitman Monographs and Surveys in Pure and Applied Mathematics, 41, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1989. |
[4] |
G. Chen,
Formation of singularity and smooth wave propagation for the non-isentropic compressible Euler equations, J. Hyperbolic Differ. Equ., 8 (2011), 671-690.
doi: 10.1142/S0219891611002536. |
[5] |
G. Chen and H. K. Jenssen,
No TVD fields for 1-D isentropic gas flow, Comm. Partial Differential Equations, 38 (2013), 629-657.
doi: 10.1080/03605302.2012.755543. |
[6] |
G. Chen, R. Young and Q. Zhang,
Shock formation in the compressible Euler equations and related systems, J. Hyperbolic Differ. Equ., 10 (2013), 149-172.
doi: 10.1142/S0219891613500069. |
[7] |
G. Chen, R. Pan and S. Zhu,
Singularity formation for the compressible Euler equations, SIAM J. Math. Anal., 49 (2017), 2591-2614.
doi: 10.1137/16M1062818. |
[8] |
G. Chen and R. Young, Shock formation and exact solutions for the compressible Euler equation, Arch. Rational Mech. Anal., 217 (2015), 1265–1293.
doi: 10.1007/s00205-015-0854-1. |
[9] |
R. Courant and K. O. Friedrichs, Supersonic Flow and Shock Waves, Wiley-Interscience, New York, 1948. |
[10] |
C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, Third edition, Springer-Verlag, Heidelberg, 2010.
doi: 10.1007/978-3-642-04048-1. |
[11] |
C. M. Dafermos, Polygonal approximations of solutions of the initial value problem for a conservation law, J. Math. Anal. Appl., 38 (1972), 33–41.
doi: 10.1016/0022-247X(72)90114-X. |
[12] |
R. J. DiPerna, Global existence of solutions to nonlinear hyperbolic systems of conservation laws, J. Differential Equations, 20 (1976), 187–212.
doi: 10.1016/0022-0396(76)90102-9. |
[13] |
H. Holden and N. H. Risebro, Front tracking for Hyperbolic Conservation Laws, New York: Springer, 2002.
doi: 10.1007/978-3-642-56139-9. |
[14] |
H. K. Jessen, On exact solutions of rarefaction-rarefaction interactions in compressible isentropic flow, J. Math. Fluid Mech., 19 (2017), 685–708.
doi: 10.1007/s00021-016-0309-y. |
[15] |
P. Lax,
Development of singularities of solutions of nonlinear hyperbolic partial differential equations, J. Mathematical Phys., 5 (1964), 611-613.
doi: 10.1063/1.1704154. |
[16] |
L. Lin,
Vacuum states and equidistribution of the random sequence for Glimm's scheme, J. Math. Anal. Appl., 124 (1987), 117-126.
doi: 10.1016/0022-247X(87)90028-X. |
[17] |
L. Lin,
On the vacuum state for the equations of isentropic gas dynamics, Math. Anal. Appl., 121 (1987), 406-425.
doi: 10.1016/0022-247X(87)90253-8. |
[18] |
T. P. Liu and J. Smoller,
On the vacuum state for the isentropic gas dynamics equations, Appl. Math., 1 (1980), 345-359.
doi: 10.1016/0196-8858(80)90016-0. |
[19] |
T. P. Liu, Z. Xin and T. Yang, Vacuum states for compressible flow, Discrete Contin. Dynam. Systems, 4 (1998), 1–32. |
[20] |
B. Riemann, Ueber die Fortpflanzung ebener Luftwellen von endlicher Schwingungsweite, Cambridge University Press, (2014), 145–164.
doi: 10.1017/CBO9781139568050.009. |
[21] |
B. Temple and R. Young,
A paradigm for time-periodic sound wave propagation in the compressible Euler equations, Methods Appl. Anal., 16 (2009), 341-363.
doi: 10.4310/MAA.2009.v16.n3.a5. |
[22] |
C. Tsikkou,
Sharper total variation bounds for the $p$-system of fluid dynamics, J. Hyperbolic Differ. Equ., 8 (2011), 173-232.
doi: 10.1142/S0219891611002391. |
[23] |
D. Wagner, Equivalence of the Euler and Lagrangian equations of gas dynamics for weak solutions, J. Differential Equations, 68 (1987), 118–136.
doi: 10.1016/0022-0396(87)90188-4. |
show all references
References:
[1] |
A. Bressan, Hyperbolic Systems of Conservation Laws: The 1-Dimensional Cauchy Problem, Oxford Univ. Press, Oxford, 2000.
![]() |
[2] |
A. Bressan, G. Chen and Q. Zhang,
Lack of BV bounds for approximate solutions to the $p$-system with large data, J. Differential Equations, 256 (2014), 3067-3085.
doi: 10.1016/j.jde.2014.01.032. |
[3] |
T. Chang and L. Hsiao, The Riemann Problem and Interaction of Waves in Gas Dynamics, Pitman Monographs and Surveys in Pure and Applied Mathematics, 41, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1989. |
[4] |
G. Chen,
Formation of singularity and smooth wave propagation for the non-isentropic compressible Euler equations, J. Hyperbolic Differ. Equ., 8 (2011), 671-690.
doi: 10.1142/S0219891611002536. |
[5] |
G. Chen and H. K. Jenssen,
No TVD fields for 1-D isentropic gas flow, Comm. Partial Differential Equations, 38 (2013), 629-657.
doi: 10.1080/03605302.2012.755543. |
[6] |
G. Chen, R. Young and Q. Zhang,
Shock formation in the compressible Euler equations and related systems, J. Hyperbolic Differ. Equ., 10 (2013), 149-172.
doi: 10.1142/S0219891613500069. |
[7] |
G. Chen, R. Pan and S. Zhu,
Singularity formation for the compressible Euler equations, SIAM J. Math. Anal., 49 (2017), 2591-2614.
doi: 10.1137/16M1062818. |
[8] |
G. Chen and R. Young, Shock formation and exact solutions for the compressible Euler equation, Arch. Rational Mech. Anal., 217 (2015), 1265–1293.
doi: 10.1007/s00205-015-0854-1. |
[9] |
R. Courant and K. O. Friedrichs, Supersonic Flow and Shock Waves, Wiley-Interscience, New York, 1948. |
[10] |
C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, Third edition, Springer-Verlag, Heidelberg, 2010.
doi: 10.1007/978-3-642-04048-1. |
[11] |
C. M. Dafermos, Polygonal approximations of solutions of the initial value problem for a conservation law, J. Math. Anal. Appl., 38 (1972), 33–41.
doi: 10.1016/0022-247X(72)90114-X. |
[12] |
R. J. DiPerna, Global existence of solutions to nonlinear hyperbolic systems of conservation laws, J. Differential Equations, 20 (1976), 187–212.
doi: 10.1016/0022-0396(76)90102-9. |
[13] |
H. Holden and N. H. Risebro, Front tracking for Hyperbolic Conservation Laws, New York: Springer, 2002.
doi: 10.1007/978-3-642-56139-9. |
[14] |
H. K. Jessen, On exact solutions of rarefaction-rarefaction interactions in compressible isentropic flow, J. Math. Fluid Mech., 19 (2017), 685–708.
doi: 10.1007/s00021-016-0309-y. |
[15] |
P. Lax,
Development of singularities of solutions of nonlinear hyperbolic partial differential equations, J. Mathematical Phys., 5 (1964), 611-613.
doi: 10.1063/1.1704154. |
[16] |
L. Lin,
Vacuum states and equidistribution of the random sequence for Glimm's scheme, J. Math. Anal. Appl., 124 (1987), 117-126.
doi: 10.1016/0022-247X(87)90028-X. |
[17] |
L. Lin,
On the vacuum state for the equations of isentropic gas dynamics, Math. Anal. Appl., 121 (1987), 406-425.
doi: 10.1016/0022-247X(87)90253-8. |
[18] |
T. P. Liu and J. Smoller,
On the vacuum state for the isentropic gas dynamics equations, Appl. Math., 1 (1980), 345-359.
doi: 10.1016/0196-8858(80)90016-0. |
[19] |
T. P. Liu, Z. Xin and T. Yang, Vacuum states for compressible flow, Discrete Contin. Dynam. Systems, 4 (1998), 1–32. |
[20] |
B. Riemann, Ueber die Fortpflanzung ebener Luftwellen von endlicher Schwingungsweite, Cambridge University Press, (2014), 145–164.
doi: 10.1017/CBO9781139568050.009. |
[21] |
B. Temple and R. Young,
A paradigm for time-periodic sound wave propagation in the compressible Euler equations, Methods Appl. Anal., 16 (2009), 341-363.
doi: 10.4310/MAA.2009.v16.n3.a5. |
[22] |
C. Tsikkou,
Sharper total variation bounds for the $p$-system of fluid dynamics, J. Hyperbolic Differ. Equ., 8 (2011), 173-232.
doi: 10.1142/S0219891611002391. |
[23] |
D. Wagner, Equivalence of the Euler and Lagrangian equations of gas dynamics for weak solutions, J. Differential Equations, 68 (1987), 118–136.
doi: 10.1016/0022-0396(87)90188-4. |










[1] |
Xin Zhong. Singularity formation to the nonhomogeneous magneto-micropolar fluid equations. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021021 |
[2] |
Tong Tang, Jianzhu Sun. Local well-posedness for the density-dependent incompressible magneto-micropolar system with vacuum. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020377 |
[3] |
Xiaoping Zhai, Yongsheng Li. Global large solutions and optimal time-decay estimates to the Korteweg system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1387-1413. doi: 10.3934/dcds.2020322 |
[4] |
Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301 |
[5] |
Raffaele Folino, Ramón G. Plaza, Marta Strani. Long time dynamics of solutions to $ p $-Laplacian diffusion problems with bistable reaction terms. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020403 |
[6] |
Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020045 |
[7] |
Sze-Bi Hsu, Yu Jin. The dynamics of a two host-two virus system in a chemostat environment. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 415-441. doi: 10.3934/dcdsb.2020298 |
[8] |
Shigui Ruan. Nonlinear dynamics in tumor-immune system interaction models with delays. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 541-602. doi: 10.3934/dcdsb.2020282 |
[9] |
Yukio Kan-On. On the limiting system in the Shigesada, Kawasaki and Teramoto model with large cross-diffusion rates. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3561-3570. doi: 10.3934/dcds.2020161 |
[10] |
Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075 |
[11] |
Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020458 |
[12] |
Simone Fagioli, Emanuela Radici. Opinion formation systems via deterministic particles approximation. Kinetic & Related Models, 2021, 14 (1) : 45-76. doi: 10.3934/krm.2020048 |
[13] |
Teresa D'Aprile. Bubbling solutions for the Liouville equation around a quantized singularity in symmetric domains. Communications on Pure & Applied Analysis, 2021, 20 (1) : 159-191. doi: 10.3934/cpaa.2020262 |
[14] |
Jintai Ding, Zheng Zhang, Joshua Deaton. The singularity attack to the multivariate signature scheme HIMQ-3. Advances in Mathematics of Communications, 2021, 15 (1) : 65-72. doi: 10.3934/amc.2020043 |
[15] |
Alexandra Köthe, Anna Marciniak-Czochra, Izumi Takagi. Hysteresis-driven pattern formation in reaction-diffusion-ODE systems. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3595-3627. doi: 10.3934/dcds.2020170 |
[16] |
Evelyn Sander, Thomas Wanner. Equilibrium validation in models for pattern formation based on Sobolev embeddings. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 603-632. doi: 10.3934/dcdsb.2020260 |
[17] |
Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163 |
[18] |
Paul E. Anderson, Timothy P. Chartier, Amy N. Langville, Kathryn E. Pedings-Behling. The rankability of weighted data from pairwise comparisons. Foundations of Data Science, 2021 doi: 10.3934/fods.2021002 |
[19] |
Emre Esentürk, Juan Velazquez. Large time behavior of exchange-driven growth. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 747-775. doi: 10.3934/dcds.2020299 |
[20] |
Wenxiong Chen, Congming Li, Shijie Qi. A Hopf lemma and regularity for fractional $ p $-Laplacians. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3235-3252. doi: 10.3934/dcds.2020034 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]