July  2019, 39(7): 4279-4302. doi: 10.3934/dcds.2019173

The semirelativistic Choquard equation with a local nonlinear term

1. 

Nicolaus Copernicus University, Faculty of Mathematics and Computer Science, ul. Chopina 12/18, 87-100 Toruń, Poland

2. 

Università degli Studi di Milano-Bicocca, Via R. Cozzi 55, I-20125 Milano, Italy

* Corresponding author

Received  November 2018 Revised  January 2019 Published  April 2019

We propose an existence result for the semirelativistic Choquard equation with a local nonlinearity in
$ \mathbb{R}^N $
$ \begin{equation*} \sqrt{ -\Delta + m^2} u - mu + V(x)u = \left( \int_{ \mathbb{R} ^N} \frac{|u(y)|^p}{|x-y|^{N-\alpha}} \, dy \right) |u|^{p-2}u - \Gamma (x) |u|^{q-2}u, \end{equation*} $
where
$ m > 0 $
and the potential
$ V $
is decomposed as the sum of a
$ \mathbb{Z}^N $
-periodic term and of a bounded term that decays at infinity. The result is proved by variational methods applied to an auxiliary problem in the half-space
$ \mathbb{R}_{+}^{N+1} $
.
Citation: Bartosz Bieganowski, Simone Secchi. The semirelativistic Choquard equation with a local nonlinear term. Discrete & Continuous Dynamical Systems - A, 2019, 39 (7) : 4279-4302. doi: 10.3934/dcds.2019173
References:
[1]

N. Ackermann, On a periodic Schrödinger equation with nonlocal superlinear part, Math. Z., 248 (2004), 423-443.  doi: 10.1007/s00209-004-0663-y.  Google Scholar

[2]

B. Bieganowski, Solutions of the fractional Schródinger equation with a sign-changing nonlinearity, J. Math. Anal. Appl., 450 (2017), 461-479.  doi: 10.1016/j.jmaa.2017.01.037.  Google Scholar

[3]

B. Bieganowski and J. Mederski, Nonlinear Schrödinger equations with sum of periodic and vanishing potentials and sign-changing nonlinearities, Commun. Pure Appl. Anal., 17 (2018), 143-161.  doi: 10.3934/cpaa.2018009.  Google Scholar

[4]

V. I. Bogachev, Measure Theory, Springer, Berlin, 2007. doi: 10.1007/978-3-540-34514-5.  Google Scholar

[5]

X. Cabré and J. Solà-Morales, Layers solutions in a half-space for boundary reactions, Comm. Pure Applied Math., 58 (2005), 1678-1732.  doi: 10.1002/cpa.20093.  Google Scholar

[6]

X. Cabré and J. Tan, Positive solutions of nonlinear problems involving the square root of the Laplacian, Adv. Math., 224 (2010), 2052-2093.  doi: 10.1016/j.aim.2010.01.025.  Google Scholar

[7]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260.  doi: 10.1080/03605300600987306.  Google Scholar

[8]

Y. H. Chen and C. Liu, Ground state solutions for non-autonomous fractional Choquard equations, Nonlinearity, 29 (2016), 1827-1842.  doi: 10.1088/0951-7715/29/6/1827.  Google Scholar

[9]

Y. Cho and T. Ozawa, On the semirelativistic Hartree-type equation, SIAM J. Math. Anal., 38 (2006), 1060-1074.  doi: 10.1137/060653688.  Google Scholar

[10]

S. CingolaniM. Clapp and S. Secchi, Multiple solutions to a magnetic nonlinear Choquard equation, Zeitschrift für Angewandte Mathematik und Physik (ZAMP), 63 (2012), 233-248.  doi: 10.1007/s00033-011-0166-8.  Google Scholar

[11]

S. CingolaniM. Clapp and S. Secchi, Intertwining semiclassical solutions to a Schródinger-Newton system, Discrete Continuous Dynmical Systems Series S, 6 (2013), 891-908.  doi: 10.3934/dcdss.2013.6.891.  Google Scholar

[12]

S. CingolaniS. Secchi and M. Squassina, Semiclassical limit for Schródinger equations with magnetic field and Hartree-type nonlinearities, Proc. Roy. Soc. Edinburgh, 140 (2010), 973-1009.  doi: 10.1017/S0308210509000584.  Google Scholar

[13]

S. Cingolani and S. Secchi, Ground states for the pseudo-relativistic Hartree equation with external potential, Proc. Roy. Soc. Edinburgh Sect. A, 145 (2015), 73-90.  doi: 10.1017/S0308210513000450.  Google Scholar

[14]

V. Coti Zelati and P. Rabinowitz, Homoclinic type solutions for a semilinear elliptic PDE on $ {\mathbb{R} ^n}$, Comm. Pure Appl. Math., 45 (1992), 1217-1269.  doi: 10.1002/cpa.3160451002.  Google Scholar

[15]

V. Coti Zelati and M. Nolasco, Existence of ground states for nonlinear, pseudorelativistic Schródinger equations, Red. Lincei Mat. Appl., 22 (2011), 51-72.  doi: 10.4171/RLM/587.  Google Scholar

[16]

A. Elgart and B. Schlein, Mean field dynamics of boson stars, Comm. Pure Appl. Math., 60 (2007), 500-545.  doi: 10.1002/cpa.20134.  Google Scholar

[17]

J. Fröhlich and E. Lenzmann, Mean-field Limit of Quantum Bose Gases and Nonlinear Hartree Equation, in Séminaire: Équations aux Dérivées Partielles 2003–2004, Exp. No. XIX, 26 pp., École Polytech., Palaiseau, 2004.  Google Scholar

[18]

L. Jeanjean and K. Tanaka, A positive solution for a nonlinear Schródinger equation of $ {\mathbb{R} ^N}$, Indiana Univ. Math. Journal, 54 (2005), 443-464.  doi: 10.1512/iumj.2005.54.2502.  Google Scholar

[19]

E. H. Lieb and H.-T. Yau, The Chandrasekhar theory of stellar collapse as the limit of quantum mechanics, Commun. Math. Phys., 112 (1987), 147-174.   Google Scholar

[20]

E. H. Lieb and M. Loss, Analysis, Graduate Studies in Mathematics, 14, American Mathematical Society, 2001. doi: 10.1090/gsm/014.  Google Scholar

[21]

E. H. Lieb and B. Simon, The Hartree-Fock theory for Coulomb systems, Comm. Math. Phys., 53 (1977), 185-194.   Google Scholar

[22]

P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. Part I, Ann. IHP, Analyse Non Linéaire, 1 (1984), 109-145.   Google Scholar

[23]

L. Ma and L. Zhao, Classification of positive solitary solutions of the nonlinear Choquard equation, Arch. Rational Mech. Anal., 195 (2010), 455-467.  doi: 10.1007/s00205-008-0208-3.  Google Scholar

[24]

I. M. Moroz, R. Penrose and P. Tod, Spherically-symmetric solutions of the Schródinger-Newton equations, Topology of the Universe Conference (Cleveland, OH, 1997), Classical Quantum Gravity, 15 (1998), 2733–2742. doi: 10.1088/0264-9381/15/9/019.  Google Scholar

[25]

V. Moroz and J. Van Schaftingen, Groundstates of nonlinear Choquard equations: Existence, qualitative properties and decay asymptotics, J. Funct. Anal., 265 (2013), 153-184.  doi: 10.1016/j.jfa.2013.04.007.  Google Scholar

[26]

R. Penrose, Quantum computation, entanglement and state reduction, R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci., 356 (1998), 1927-1939.  doi: 10.1098/rsta.1998.0256.  Google Scholar

[27]

R. Penrose, The Road to Reality. A Complete Guide to the Laws of the Universe, Alfred A. Knopf Inc., New York, 2005.  Google Scholar

[28]

S. Secchi, Ground state solutions for nonlinear fractional Schrödinger equations in $ {\mathbb{R} ^N}$, Journal of Mathematical Physics, 54 (2013), 031501, 17 pp. doi: 10.1063/1.4793990.  Google Scholar

[29]

L. Tartar, An Introduction to Sobolev Spaces and Interpolation Spaces, Lecture Notes of the Unione Matematica Italiana, 3, Springer, Berlin; UMI, Bologna, 2007.  Google Scholar

[30]

P. Tod, The ground state energy of the Schródinger-Newton equation, Physics Letters A, 280 (2001), 173-176.  doi: 10.1016/S0375-9601(01)00059-7.  Google Scholar

[31]

J. Wei and M. Winter, Strongly interacting bumps for the Schrödinger-Newton equation, J. Math. Phys., 50 (2009), 012905, 22 pp. doi: 10.1063/1.3060169.  Google Scholar

show all references

References:
[1]

N. Ackermann, On a periodic Schrödinger equation with nonlocal superlinear part, Math. Z., 248 (2004), 423-443.  doi: 10.1007/s00209-004-0663-y.  Google Scholar

[2]

B. Bieganowski, Solutions of the fractional Schródinger equation with a sign-changing nonlinearity, J. Math. Anal. Appl., 450 (2017), 461-479.  doi: 10.1016/j.jmaa.2017.01.037.  Google Scholar

[3]

B. Bieganowski and J. Mederski, Nonlinear Schrödinger equations with sum of periodic and vanishing potentials and sign-changing nonlinearities, Commun. Pure Appl. Anal., 17 (2018), 143-161.  doi: 10.3934/cpaa.2018009.  Google Scholar

[4]

V. I. Bogachev, Measure Theory, Springer, Berlin, 2007. doi: 10.1007/978-3-540-34514-5.  Google Scholar

[5]

X. Cabré and J. Solà-Morales, Layers solutions in a half-space for boundary reactions, Comm. Pure Applied Math., 58 (2005), 1678-1732.  doi: 10.1002/cpa.20093.  Google Scholar

[6]

X. Cabré and J. Tan, Positive solutions of nonlinear problems involving the square root of the Laplacian, Adv. Math., 224 (2010), 2052-2093.  doi: 10.1016/j.aim.2010.01.025.  Google Scholar

[7]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260.  doi: 10.1080/03605300600987306.  Google Scholar

[8]

Y. H. Chen and C. Liu, Ground state solutions for non-autonomous fractional Choquard equations, Nonlinearity, 29 (2016), 1827-1842.  doi: 10.1088/0951-7715/29/6/1827.  Google Scholar

[9]

Y. Cho and T. Ozawa, On the semirelativistic Hartree-type equation, SIAM J. Math. Anal., 38 (2006), 1060-1074.  doi: 10.1137/060653688.  Google Scholar

[10]

S. CingolaniM. Clapp and S. Secchi, Multiple solutions to a magnetic nonlinear Choquard equation, Zeitschrift für Angewandte Mathematik und Physik (ZAMP), 63 (2012), 233-248.  doi: 10.1007/s00033-011-0166-8.  Google Scholar

[11]

S. CingolaniM. Clapp and S. Secchi, Intertwining semiclassical solutions to a Schródinger-Newton system, Discrete Continuous Dynmical Systems Series S, 6 (2013), 891-908.  doi: 10.3934/dcdss.2013.6.891.  Google Scholar

[12]

S. CingolaniS. Secchi and M. Squassina, Semiclassical limit for Schródinger equations with magnetic field and Hartree-type nonlinearities, Proc. Roy. Soc. Edinburgh, 140 (2010), 973-1009.  doi: 10.1017/S0308210509000584.  Google Scholar

[13]

S. Cingolani and S. Secchi, Ground states for the pseudo-relativistic Hartree equation with external potential, Proc. Roy. Soc. Edinburgh Sect. A, 145 (2015), 73-90.  doi: 10.1017/S0308210513000450.  Google Scholar

[14]

V. Coti Zelati and P. Rabinowitz, Homoclinic type solutions for a semilinear elliptic PDE on $ {\mathbb{R} ^n}$, Comm. Pure Appl. Math., 45 (1992), 1217-1269.  doi: 10.1002/cpa.3160451002.  Google Scholar

[15]

V. Coti Zelati and M. Nolasco, Existence of ground states for nonlinear, pseudorelativistic Schródinger equations, Red. Lincei Mat. Appl., 22 (2011), 51-72.  doi: 10.4171/RLM/587.  Google Scholar

[16]

A. Elgart and B. Schlein, Mean field dynamics of boson stars, Comm. Pure Appl. Math., 60 (2007), 500-545.  doi: 10.1002/cpa.20134.  Google Scholar

[17]

J. Fröhlich and E. Lenzmann, Mean-field Limit of Quantum Bose Gases and Nonlinear Hartree Equation, in Séminaire: Équations aux Dérivées Partielles 2003–2004, Exp. No. XIX, 26 pp., École Polytech., Palaiseau, 2004.  Google Scholar

[18]

L. Jeanjean and K. Tanaka, A positive solution for a nonlinear Schródinger equation of $ {\mathbb{R} ^N}$, Indiana Univ. Math. Journal, 54 (2005), 443-464.  doi: 10.1512/iumj.2005.54.2502.  Google Scholar

[19]

E. H. Lieb and H.-T. Yau, The Chandrasekhar theory of stellar collapse as the limit of quantum mechanics, Commun. Math. Phys., 112 (1987), 147-174.   Google Scholar

[20]

E. H. Lieb and M. Loss, Analysis, Graduate Studies in Mathematics, 14, American Mathematical Society, 2001. doi: 10.1090/gsm/014.  Google Scholar

[21]

E. H. Lieb and B. Simon, The Hartree-Fock theory for Coulomb systems, Comm. Math. Phys., 53 (1977), 185-194.   Google Scholar

[22]

P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. Part I, Ann. IHP, Analyse Non Linéaire, 1 (1984), 109-145.   Google Scholar

[23]

L. Ma and L. Zhao, Classification of positive solitary solutions of the nonlinear Choquard equation, Arch. Rational Mech. Anal., 195 (2010), 455-467.  doi: 10.1007/s00205-008-0208-3.  Google Scholar

[24]

I. M. Moroz, R. Penrose and P. Tod, Spherically-symmetric solutions of the Schródinger-Newton equations, Topology of the Universe Conference (Cleveland, OH, 1997), Classical Quantum Gravity, 15 (1998), 2733–2742. doi: 10.1088/0264-9381/15/9/019.  Google Scholar

[25]

V. Moroz and J. Van Schaftingen, Groundstates of nonlinear Choquard equations: Existence, qualitative properties and decay asymptotics, J. Funct. Anal., 265 (2013), 153-184.  doi: 10.1016/j.jfa.2013.04.007.  Google Scholar

[26]

R. Penrose, Quantum computation, entanglement and state reduction, R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci., 356 (1998), 1927-1939.  doi: 10.1098/rsta.1998.0256.  Google Scholar

[27]

R. Penrose, The Road to Reality. A Complete Guide to the Laws of the Universe, Alfred A. Knopf Inc., New York, 2005.  Google Scholar

[28]

S. Secchi, Ground state solutions for nonlinear fractional Schrödinger equations in $ {\mathbb{R} ^N}$, Journal of Mathematical Physics, 54 (2013), 031501, 17 pp. doi: 10.1063/1.4793990.  Google Scholar

[29]

L. Tartar, An Introduction to Sobolev Spaces and Interpolation Spaces, Lecture Notes of the Unione Matematica Italiana, 3, Springer, Berlin; UMI, Bologna, 2007.  Google Scholar

[30]

P. Tod, The ground state energy of the Schródinger-Newton equation, Physics Letters A, 280 (2001), 173-176.  doi: 10.1016/S0375-9601(01)00059-7.  Google Scholar

[31]

J. Wei and M. Winter, Strongly interacting bumps for the Schrödinger-Newton equation, J. Math. Phys., 50 (2009), 012905, 22 pp. doi: 10.1063/1.3060169.  Google Scholar

[1]

Anh Tuan Duong, Phuong Le, Nhu Thang Nguyen. Symmetry and nonexistence results for a fractional Choquard equation with weights. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 489-505. doi: 10.3934/dcds.2020265

[2]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[3]

Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270

[4]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[5]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[6]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[7]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[8]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264

[9]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[10]

Andrew D. Lewis. Erratum for "nonholonomic and constrained variational mechanics". Journal of Geometric Mechanics, 2020, 12 (4) : 671-675. doi: 10.3934/jgm.2020033

[11]

Qiao Liu. Local rigidity of certain solvable group actions on tori. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 553-567. doi: 10.3934/dcds.2020269

[12]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[13]

Shipra Singh, Aviv Gibali, Xiaolong Qin. Cooperation in traffic network problems via evolutionary split variational inequalities. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020170

[14]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116

[15]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[16]

Chao Wang, Qihuai Liu, Zhiguo Wang. Periodic bouncing solutions for Hill's type sub-linear oscillators with obstacles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 281-300. doi: 10.3934/cpaa.2020266

[17]

Anna Canale, Francesco Pappalardo, Ciro Tarantino. Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials. Communications on Pure & Applied Analysis, 2021, 20 (1) : 405-425. doi: 10.3934/cpaa.2020274

[18]

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213

[19]

Xin Guo, Lei Shi. Preface of the special issue on analysis in data science: Methods and applications. Mathematical Foundations of Computing, 2020, 3 (4) : i-ii. doi: 10.3934/mfc.2020026

[20]

Shun Zhang, Jianlin Jiang, Su Zhang, Yibing Lv, Yuzhen Guo. ADMM-type methods for generalized multi-facility Weber problem. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020171

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (107)
  • HTML views (166)
  • Cited by (0)

Other articles
by authors

[Back to Top]