July  2019, 39(7): 4303-4329. doi: 10.3934/dcds.2019174

The Boltzmann equation with frictional force for very soft potentials in the whole space

1. 

School of Mathematics and Statistics, Nanyang Normal University, Nanyang 473061, China

2. 

School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan 430074, China

3. 

Hubei Key Laboratory of Engineering Modeling and Scientific Computing, Huazhong University of Science and Technology, Wuhan 430074, China

* Corresponding author: Yuanjie Lei

Received  November 2016 Published  April 2019

Fund Project: The corresponding author is supported by NSFC grant No.11601169 and 11871335.

We develop a general energy method for proving the optimal time decay rates of the higher-order spatial derivatives of solutions to the Boltzmann-type and Landau-type systems in the whole space, for both hard potentials and soft potentials. With the help of this method, we establish the global existence and temporal convergence rates of solution near a given global Maxwellian to the Cauchy problem on the Boltzmann equation with frictional force for very soft potentials i.e. $ -3<\gamma<-2 $.

Citation: Yingzhe Fan, Yuanjie Lei. The Boltzmann equation with frictional force for very soft potentials in the whole space. Discrete and Continuous Dynamical Systems, 2019, 39 (7) : 4303-4329. doi: 10.3934/dcds.2019174
References:
[1]

R. AlexandreY. MorimotoS. UkaiC. J. Xu and T. Yang, Regularizing effect and local existence for non-cutoff Boltzmann equation, Arch. Ration. Mech. Anal., 198 (2010), 39-123.  doi: 10.1007/s00205-010-0290-1.

[2]

R. AlexandreY. MorimotoS. UkaiC. J. Xu and T. Yang, Global existence and full regularity of the Boltzmann equation without angular cutoff, Comm. Math. Phys., 304 (2011), 513-581.  doi: 10.1007/s00220-011-1242-9.

[3]

R. AlexandreY. MorimotoS. UkaiC. J. Xu and T. Yang, The Boltzmann equation without angular cutoff in the whole space: I, Global existence for soft potential, J. Funct. Anal., 262 (2012), 915-1010.  doi: 10.1016/j.jfa.2011.10.007.

[4]

R. J. DuanY. J. LeiT. Yang and H. J. Zhao, The Vlasov-Maxwell-Boltzmann system near Maxwellians in the whole space with very soft potentials, Comm. Math. Phys., 351 (2017), 95-153.  doi: 10.1007/s00220-017-2844-7.

[5]

R. J. Duan and S. Q. Liu, The Vlasov-Poisson-Boltzmann System without angular cutoff, Comm. Math. Phys., 324 (2013), 1-45.  doi: 10.1007/s00220-013-1807-x.

[6]

R. J. DuanS. Q. LiuT. Yang and H. J. Zhao, Stabilty of the nonrelativistic Vlasov-Maxwell-Boltzmann system for angular non-cutoff potentials, Kinetic and Related Models, 6 (2013), 159-204.  doi: 10.3934/krm.2013.6.159.

[7]

R. J. Duan and R. M. Strain, Optimal time decay of the Vlasov-Poisson-Boltzmann system in ${\mathbb{R}^3}$, Arch. Ration. Mech. Anal., 199 (2011), 291-328.  doi: 10.1007/s00205-010-0318-6.

[8]

R. J. Duan and R. M. Strain, Optimal large-time behavior of the Vlasov-Maxwell-Boltzmann system in the whole space, Comm. Pure Appl. Math., 64 (2011), 1497-1546.  doi: 10.1002/cpa.20381.

[9]

R. J. DuanS. UkaiT. Yang and H. J. Zhao, Optimal decay estimates on the linearized Boltzmann equation with time dependent force and their applications, Comm. Math. Phys., 277 (2008), 189-236.  doi: 10.1007/s00220-007-0366-4.

[10]

R. J. Duan and T. Yang, Stability of the one-species Vlasov-Poisson-Boltzmann system, SIAM J. Math. Anal., 41 (2010), 2353-2387.  doi: 10.1137/090745775.

[11]

R. J. DuanT. Yang and H. J. Zhao, The Vlasov-Poisson-Boltzmann system in the whole space: The hard potential case, J. Differential Equations, 252 (2012), 6356-6386.  doi: 10.1016/j.jde.2012.03.012.

[12]

R. J. DuanT. Yang and H. J. Zhao, The Vlasov-Poisson-Boltzmann system for soft potentials, Math. Methods Models Appl. Sci., 23 (2013), 979-1028.  doi: 10.1142/s0218202513500012.

[13]

Y. Z. Fan and Y. J. Lei, Global solutions and time decay of the non-cutoff Vlasov-Maxwell-Boltzmann system in the whole space, J. Stat. Phys., 161 (2015), 1059-1097.  doi: 10.1007/s10955-015-1380-0.

[14]

R. Glassey, The Cauchy Problem in Kinetic Theory, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1996. doi: 10.1137/1.9781611971477.

[15] H. Grad, Asymptotic theory of the Boltzmann equation. Ⅱ., in Rarefied Gas Dynamics Vol. Ⅰ, Academic Press, New York, 1963. 
[16]

P. T. Gressman and R. M. Strain, Global classical solutions of the Boltzmann equation without angular cut-off, J. Amer. Math. Soc., 24 (2011), 771-847.  doi: 10.1090/s0894-0347-2011-00697-8.

[17]

Y. Guo, The Vlasov-Poisson-Boltzmann system near Maxwellians, Comm. Pure Appl. Math., 55 (2002), 1104-1135.  doi: 10.1002/cpa.10040.

[18]

Y. Guo, The Vlasov-Maxwell-Boltzmann system near Maxwellians, Invent. Math., 153 (2003), 593-630.  doi: 10.1007/s00222-003-0301-z.

[19]

Y. Guo, The Boltzmann equation in the whole space, Indiana Univ. Math. J., 53 (2004), 1081-1094.  doi: 10.1512/iumj.2004.53.2574.

[20]

Y. Guo, The Vlasov-Poisson-Laudau system in a periodic box, J. Amer. Math. Soc., 25 (2012), 759-812.  doi: 10.1090/S0894-0347-2011-00722-4.

[21]

Y. Guo and Y. J. Wang, Decay of dissipative equation and negative sobolev spaces, Comm.Partial Differential Equations, 37 (2012), 2165-2208.  doi: 10.1080/03605302.2012.696296.

[22]

L. Hsiao and T. P. Liu, Convergence to nonlinear diffusion waves for solutions of a system of hyperbolic conservation laws with damping, Comm. Math. Phys., 143 (1992), 599-605.  doi: 10.1007/BF02099268.

[23]

Y. J. Lei and L. Wan, The Boltzmann equation with frictional force for soft potentials in the whole space, J. Differential Equations, 258 (2015), 3491-3534.  doi: 10.1016/j.jde.2015.01.021.

[24]

S. Q. Liu and H. X. Liu, Optimal convergence rate of the Landau equation with frictional force, Acta Math. Sci. Ser. B Engl. Ed., 32 (2012), 1781-1804. 

[25]

T. P. LiuT. Yang and S. H. Yu, Energy method for the Boltzmann equation, Physica D, 188 (2004), 178-192.  doi: 10.1016/j.physd.2003.07.011.

[26]

R. M. Strain and Y. Guo, Exponential decay for soft potentials near Maxwellian, Arch. Ration. Mech. Anal., 187 (2008), 287-339.  doi: 10.1007/s00205-007-0067-3.

[27]

S. UkaiT. Yang and H. J. Zhao, Global solutions to the Boltzmann equation with external forces, Anal. Appl., 3 (2005), 157-193.  doi: 10.1142/S0219530505000522.

[28]

S. W. Vong, The Boltzmann equation with frictional force, J. Differential Equations, 222 (2006), 95-136.  doi: 10.1016/j.jde.2005.07.007.

[29]

Y. Wang and Z. H. Jiang, Optimal time decay of the Boltzmann equation with frictional force, J. Math. Anal. Appl., 374 (2011), 499-515. 

[30]

Q. H. XiaoL. J. Xiong and H. J. Zhao, The Vlasov-Posson-Boltzmann system with angular cutoff for soft potential, J. Differential Equations, 255 (2013), 1196-1232.  doi: 10.1016/j.jde.2013.05.005.

[31]

T. Yang and H. J. Yu, Optimal convergence rates of Landau equation with external forcing in the whole space, Acta Math. Sci. Ser. B Engl. Ed., 29 (2009), 1035-1062.  doi: 10.1016/S0252-9602(09)60085-0.

show all references

References:
[1]

R. AlexandreY. MorimotoS. UkaiC. J. Xu and T. Yang, Regularizing effect and local existence for non-cutoff Boltzmann equation, Arch. Ration. Mech. Anal., 198 (2010), 39-123.  doi: 10.1007/s00205-010-0290-1.

[2]

R. AlexandreY. MorimotoS. UkaiC. J. Xu and T. Yang, Global existence and full regularity of the Boltzmann equation without angular cutoff, Comm. Math. Phys., 304 (2011), 513-581.  doi: 10.1007/s00220-011-1242-9.

[3]

R. AlexandreY. MorimotoS. UkaiC. J. Xu and T. Yang, The Boltzmann equation without angular cutoff in the whole space: I, Global existence for soft potential, J. Funct. Anal., 262 (2012), 915-1010.  doi: 10.1016/j.jfa.2011.10.007.

[4]

R. J. DuanY. J. LeiT. Yang and H. J. Zhao, The Vlasov-Maxwell-Boltzmann system near Maxwellians in the whole space with very soft potentials, Comm. Math. Phys., 351 (2017), 95-153.  doi: 10.1007/s00220-017-2844-7.

[5]

R. J. Duan and S. Q. Liu, The Vlasov-Poisson-Boltzmann System without angular cutoff, Comm. Math. Phys., 324 (2013), 1-45.  doi: 10.1007/s00220-013-1807-x.

[6]

R. J. DuanS. Q. LiuT. Yang and H. J. Zhao, Stabilty of the nonrelativistic Vlasov-Maxwell-Boltzmann system for angular non-cutoff potentials, Kinetic and Related Models, 6 (2013), 159-204.  doi: 10.3934/krm.2013.6.159.

[7]

R. J. Duan and R. M. Strain, Optimal time decay of the Vlasov-Poisson-Boltzmann system in ${\mathbb{R}^3}$, Arch. Ration. Mech. Anal., 199 (2011), 291-328.  doi: 10.1007/s00205-010-0318-6.

[8]

R. J. Duan and R. M. Strain, Optimal large-time behavior of the Vlasov-Maxwell-Boltzmann system in the whole space, Comm. Pure Appl. Math., 64 (2011), 1497-1546.  doi: 10.1002/cpa.20381.

[9]

R. J. DuanS. UkaiT. Yang and H. J. Zhao, Optimal decay estimates on the linearized Boltzmann equation with time dependent force and their applications, Comm. Math. Phys., 277 (2008), 189-236.  doi: 10.1007/s00220-007-0366-4.

[10]

R. J. Duan and T. Yang, Stability of the one-species Vlasov-Poisson-Boltzmann system, SIAM J. Math. Anal., 41 (2010), 2353-2387.  doi: 10.1137/090745775.

[11]

R. J. DuanT. Yang and H. J. Zhao, The Vlasov-Poisson-Boltzmann system in the whole space: The hard potential case, J. Differential Equations, 252 (2012), 6356-6386.  doi: 10.1016/j.jde.2012.03.012.

[12]

R. J. DuanT. Yang and H. J. Zhao, The Vlasov-Poisson-Boltzmann system for soft potentials, Math. Methods Models Appl. Sci., 23 (2013), 979-1028.  doi: 10.1142/s0218202513500012.

[13]

Y. Z. Fan and Y. J. Lei, Global solutions and time decay of the non-cutoff Vlasov-Maxwell-Boltzmann system in the whole space, J. Stat. Phys., 161 (2015), 1059-1097.  doi: 10.1007/s10955-015-1380-0.

[14]

R. Glassey, The Cauchy Problem in Kinetic Theory, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1996. doi: 10.1137/1.9781611971477.

[15] H. Grad, Asymptotic theory of the Boltzmann equation. Ⅱ., in Rarefied Gas Dynamics Vol. Ⅰ, Academic Press, New York, 1963. 
[16]

P. T. Gressman and R. M. Strain, Global classical solutions of the Boltzmann equation without angular cut-off, J. Amer. Math. Soc., 24 (2011), 771-847.  doi: 10.1090/s0894-0347-2011-00697-8.

[17]

Y. Guo, The Vlasov-Poisson-Boltzmann system near Maxwellians, Comm. Pure Appl. Math., 55 (2002), 1104-1135.  doi: 10.1002/cpa.10040.

[18]

Y. Guo, The Vlasov-Maxwell-Boltzmann system near Maxwellians, Invent. Math., 153 (2003), 593-630.  doi: 10.1007/s00222-003-0301-z.

[19]

Y. Guo, The Boltzmann equation in the whole space, Indiana Univ. Math. J., 53 (2004), 1081-1094.  doi: 10.1512/iumj.2004.53.2574.

[20]

Y. Guo, The Vlasov-Poisson-Laudau system in a periodic box, J. Amer. Math. Soc., 25 (2012), 759-812.  doi: 10.1090/S0894-0347-2011-00722-4.

[21]

Y. Guo and Y. J. Wang, Decay of dissipative equation and negative sobolev spaces, Comm.Partial Differential Equations, 37 (2012), 2165-2208.  doi: 10.1080/03605302.2012.696296.

[22]

L. Hsiao and T. P. Liu, Convergence to nonlinear diffusion waves for solutions of a system of hyperbolic conservation laws with damping, Comm. Math. Phys., 143 (1992), 599-605.  doi: 10.1007/BF02099268.

[23]

Y. J. Lei and L. Wan, The Boltzmann equation with frictional force for soft potentials in the whole space, J. Differential Equations, 258 (2015), 3491-3534.  doi: 10.1016/j.jde.2015.01.021.

[24]

S. Q. Liu and H. X. Liu, Optimal convergence rate of the Landau equation with frictional force, Acta Math. Sci. Ser. B Engl. Ed., 32 (2012), 1781-1804. 

[25]

T. P. LiuT. Yang and S. H. Yu, Energy method for the Boltzmann equation, Physica D, 188 (2004), 178-192.  doi: 10.1016/j.physd.2003.07.011.

[26]

R. M. Strain and Y. Guo, Exponential decay for soft potentials near Maxwellian, Arch. Ration. Mech. Anal., 187 (2008), 287-339.  doi: 10.1007/s00205-007-0067-3.

[27]

S. UkaiT. Yang and H. J. Zhao, Global solutions to the Boltzmann equation with external forces, Anal. Appl., 3 (2005), 157-193.  doi: 10.1142/S0219530505000522.

[28]

S. W. Vong, The Boltzmann equation with frictional force, J. Differential Equations, 222 (2006), 95-136.  doi: 10.1016/j.jde.2005.07.007.

[29]

Y. Wang and Z. H. Jiang, Optimal time decay of the Boltzmann equation with frictional force, J. Math. Anal. Appl., 374 (2011), 499-515. 

[30]

Q. H. XiaoL. J. Xiong and H. J. Zhao, The Vlasov-Posson-Boltzmann system with angular cutoff for soft potential, J. Differential Equations, 255 (2013), 1196-1232.  doi: 10.1016/j.jde.2013.05.005.

[31]

T. Yang and H. J. Yu, Optimal convergence rates of Landau equation with external forcing in the whole space, Acta Math. Sci. Ser. B Engl. Ed., 29 (2009), 1035-1062.  doi: 10.1016/S0252-9602(09)60085-0.

[1]

Lvqiao Liu, Hao Wang. Global existence and decay of solutions for hard potentials to the fokker-planck-boltzmann equation without cut-off. Communications on Pure and Applied Analysis, 2020, 19 (6) : 3113-3136. doi: 10.3934/cpaa.2020135

[2]

Nicolas Fournier. A new regularization possibility for the Boltzmann equation with soft potentials. Kinetic and Related Models, 2008, 1 (3) : 405-414. doi: 10.3934/krm.2008.1.405

[3]

Fei Meng, Fang Liu. On the inelastic Boltzmann equation for soft potentials with diffusion. Communications on Pure and Applied Analysis, 2020, 19 (11) : 5197-5217. doi: 10.3934/cpaa.2020233

[4]

Barbara Kaltenbacher, Irena Lasiecka. Global existence and exponential decay rates for the Westervelt equation. Discrete and Continuous Dynamical Systems - S, 2009, 2 (3) : 503-523. doi: 10.3934/dcdss.2009.2.503

[5]

Robert M. Strain, Keya Zhu. Large-time decay of the soft potential relativistic Boltzmann equation in $\mathbb{R}^3_x$. Kinetic and Related Models, 2012, 5 (2) : 383-415. doi: 10.3934/krm.2012.5.383

[6]

Linjie Xiong, Tao Wang, Lusheng Wang. Global existence and decay of solutions to the Fokker-Planck-Boltzmann equation. Kinetic and Related Models, 2014, 7 (1) : 169-194. doi: 10.3934/krm.2014.7.169

[7]

Maya Bassam, Denis Mercier, Ali Wehbe. Optimal energy decay rate of Rayleigh beam equation with only one boundary control force. Evolution Equations and Control Theory, 2015, 4 (1) : 21-38. doi: 10.3934/eect.2015.4.21

[8]

Hongjun Yu. Global classical solutions to the Boltzmann equation with external force. Communications on Pure and Applied Analysis, 2009, 8 (5) : 1647-1668. doi: 10.3934/cpaa.2009.8.1647

[9]

Mohammad A. Rammaha, Daniel Toundykov, Zahava Wilstein. Global existence and decay of energy for a nonlinear wave equation with $p$-Laplacian damping. Discrete and Continuous Dynamical Systems, 2012, 32 (12) : 4361-4390. doi: 10.3934/dcds.2012.32.4361

[10]

Haibo Cui, Lei Yao, Zheng-An Yao. Global existence and optimal decay rates of solutions to a reduced gravity two and a half layer model. Communications on Pure and Applied Analysis, 2015, 14 (3) : 981-1000. doi: 10.3934/cpaa.2015.14.981

[11]

Jincheng Gao, Zheng-An Yao. Global existence and optimal decay rates of solutions for compressible Hall-MHD equations. Discrete and Continuous Dynamical Systems, 2016, 36 (6) : 3077-3106. doi: 10.3934/dcds.2016.36.3077

[12]

Zheng-an Yao, Yu-Long Zhou. High order approximation for the Boltzmann equation without angular cutoff under moderately soft potentials. Kinetic and Related Models, 2020, 13 (3) : 435-478. doi: 10.3934/krm.2020015

[13]

Ryo Ikehata, Shingo Kitazaki. Optimal energy decay rates for some wave equations with double damping terms. Evolution Equations and Control Theory, 2019, 8 (4) : 825-846. doi: 10.3934/eect.2019040

[14]

Robert M. Strain. Optimal time decay of the non cut-off Boltzmann equation in the whole space. Kinetic and Related Models, 2012, 5 (3) : 583-613. doi: 10.3934/krm.2012.5.583

[15]

Moez Daoulatli. Energy decay rates for solutions of the wave equation with linear damping in exterior domain. Evolution Equations and Control Theory, 2016, 5 (1) : 37-59. doi: 10.3934/eect.2016.5.37

[16]

Shaofei Wu, Mingqing Wang, Maozhu Jin, Yuntao Zou, Lijun Song. Uniform $L^1$ stability of the inelastic Boltzmann equation with large external force for hard potentials. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1005-1013. doi: 10.3934/dcdss.2019068

[17]

Vanessa Barros, Carlos Nonato, Carlos Raposo. Global existence and energy decay of solutions for a wave equation with non-constant delay and nonlinear weights. Electronic Research Archive, 2020, 28 (1) : 205-220. doi: 10.3934/era.2020014

[18]

Mohammad Al-Gharabli, Mohamed Balegh, Baowei Feng, Zayd Hajjej, Salim A. Messaoudi. Existence and general decay of Balakrishnan-Taylor viscoelastic equation with nonlinear frictional damping and logarithmic source term. Evolution Equations and Control Theory, 2021  doi: 10.3934/eect.2021038

[19]

Raffaele Esposito, Yan Guo, Rossana Marra. Validity of the Boltzmann equation with an external force. Kinetic and Related Models, 2011, 4 (2) : 499-515. doi: 10.3934/krm.2011.4.499

[20]

Jun Zhou. Global existence and energy decay estimate of solutions for a class of nonlinear higher-order wave equation with general nonlinear dissipation and source term. Discrete and Continuous Dynamical Systems - S, 2017, 10 (5) : 1175-1185. doi: 10.3934/dcdss.2017064

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (220)
  • HTML views (160)
  • Cited by (0)

Other articles
by authors

[Back to Top]