In this paper we prove local smoothing estimates for the Dirac equation on some non-flat manifolds; in particular, we will consider asymptotically flat and warped products metrics. The strategy of the proofs relies on the multiplier method.
| Citation: |
| [1] |
D. Baskin, A Strichartz Estimate for de Sitter Space, The AMSI-ANU Workshop on Spectral Theory and Harmonic Analysis, Proc. Centre Math. Appl. Austral. Nat. Univ., vol. 44, Austral. Nat. Univ., Canberra, 2010, 97–104.
|
| [2] |
D. Baskin and Ja red Wunsch, Resolvent estimates and local decay of waves on conic manifolds, J. Differential Geom., 95 (2013), 183-214.
|
| [3] |
M. D. Blair, H. F. Smith and C. D. Sogge, Strichartz estimates for the wave equation on manifolds with boundary, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 1817-1829.
doi: 10.1016/j.anihpc.2008.12.004.
|
| [4] |
N. Boussaid, P. D'Ancona and L. Fanelli, Virial identity and weak dispersion for the magnetic dirac equation, Journal de Mathématiques Pures et Appliquées, 95 (2011), 137-150.
doi: 10.1016/j.matpur.2010.10.004.
|
| [5] |
N. Burq, Global Strichartz estimates for nontrapping geometries: About an article by H. F. Smith and C. D. Sogge, Comm. Partial Differential Equations, 28 (2003), 1675-1683.
doi: 10.1081/PDE-120024528.
|
| [6] |
F. Cacciafesta, Virial identity and dispersive estimates for the n-dimensional Dirac equation, J. Math. Sci. Univ. Tokyo, 18 (2011), 441-463.
|
| [7] |
F. Cacciafesta, Smoothing estimates for variable coefficients Schroedinger equation with electromagnetic potential, J. Math. Anal. Appl., 402 (2013), 286-296.
doi: 10.1016/j.jmaa.2013.01.040.
|
| [8] |
F. Cacciafesta and P. D'Ancona, Endpoint estimates and global existence for the nonlinear Dirac equation with a potential, J. Differential Equations, 254 (2013), 2233-2260.
doi: 10.1016/j.jde.2012.12.002.
|
| [9] |
F. Cacciafesta, P. D'Ancona and R. Lucá, Helmholtz and dispersive equations with variable coefficients on external domains, SIAM J. Math. Anal., 48 (2016), 1798-1832.
doi: 10.1137/15M103769X.
|
| [10] |
F. Cacciafesta and Er ic Séré, Local smoothing estimates for the Dirac Coulomb equation in 2 and 3 dimensions, J. Funct. Anal., 271 (2016), 2339-2358.
doi: 10.1016/j.jfa.2016.04.003.
|
| [11] |
P. R. Chernoff, Essential self-adjointness of powers of generators of hyperbolic equations, J. Functional Analysis, 12 (1973), 401-414.
doi: 10.1016/0022-1236(73)90003-7.
|
| [12] |
P. D'Ancona and L. Fanelli, Decay estimates for the wave and Dirac equations with a magnetic potential, Comm. Pure Appl. Math., 60 (2007), 357-392.
doi: 10.1002/cpa.20152.
|
| [13] |
P. D'Ancona and L. Fanelli, Strichartz and smoothing estimates of dispersive equations with magnetic potentials, Comm. Partial Differential Equations, 33 (2008), 1082-1112.
doi: 10.1080/03605300701743749.
|
| [14] |
L. Fanelli and L. Vega, Magnetic virial identities, weak dispersion and Strichartz inequalities, Math. Ann., 344 (2009), 249-278.
doi: 10.1007/s00208-008-0303-7.
|
| [15] |
V. Fock, Geometrization of the Dirac thory of electrons, Zeit. f. Phys, 57 (1929), 261-277.
|
| [16] |
A. Hassell, T. Tao and J. Wunsch, Sharp Strichartz estimates on nontrapping asymptotically conic manifolds, American Journal of Mathematics, 128 (2006), 963-1024.
|
| [17] |
J. Metcalfe and D. Tataru, Global parametrices and dispersive estimates for variable coefficient wave equations, Math. Ann., 353 (2012), 1183-1237.
doi: 10.1007/s00208-011-0714-8.
|
| [18] |
L. E. Parker and D. J. Toms, Quantum Field Theory in Curved Spacetime, Cambridge university press, Cambridge, 2009.
doi: 10.1017/CBO9780511813924.
|
| [19] |
M. M. G. Ricci and T. Levi-Civita, Berichtigungen zum Aufsatz, Math. Ann., 54 (1901), 608.
doi: 10.1007/BF01450726.
|
| [20] |
H. F. Smith and C. D. Sogge, On the critical semilinear wave equation outside convex obstacles, J. Amer. Math. Soc., 8 (1995), 879-916.
doi: 10.2307/2152832.
|
| [21] |
D. Tataru, Strichartz estimates for second order hyperbolic operators with nonsmooth coefficients. Ⅲ, J. Amer. Math. Soc., 15 (2002), 419–442 (electronic).
doi: 10.1090/S0894-0347-01-00375-7.
|
| [22] |
A. Vasy and J. Wunsch, Morawetz estimates for the wave equation at low frequency, Math. Ann., 355 (2013), 1221-1254.
doi: 10.1007/s00208-012-0817-x.
|