We present an exact solution to the nonlinear governing equations in the $ \beta $-plane approximation for geophysical waves propagating at arbitrary latitude on a zonal current. Such an exact solution is explicit in the Lagrangian framework and represents three-dimensional, nonlinear oceanic wave-current interactions. Based on the short-wavelength instability approach, we prove criteria for the hydrodynamical instability of such waves.
Citation: |
[1] |
B. J. Bayly, Three-dimensional instabilities in quasi-two-dimensional inviscid flows, in Nonlinear Wave Interactions in Fluids, edited by R. W. Miksad et al., 71–77, ASME, New York, 1987.
![]() |
[2] |
A. Bennett, Lagrangian Fluid Dynamics, Cambridge University Press, Cambridge, 2006.
doi: 10.1017/CBO9780511734939.![]() ![]() ![]() |
[3] |
A. Constantin, On the deep water wave motion, J. Phys. A, 34 (2001), 1405-1417.
doi: 10.1088/0305-4470/34/7/313.![]() ![]() ![]() |
[4] |
A. Constantin, Nonlinear Water Waves with Applications to Wave-Current Interactions and Tsunamis, CBMS-NSF Conference Series in Applied Mathematics, vol. 81, SIAM, Philadelphia, 2011.
doi: 10.1137/1.9781611971873.![]() ![]() ![]() |
[5] |
A. Constantin, An exact solution for equatorially trapped waves, J. Geophys. Res., 117 (2012), C05029.
doi: 10.1029/2012JC007879.![]() ![]() |
[6] |
A. Constantin, On the modelling of equatorial waves, Geophys. Res. Lett., 39 (2012), L05602.
doi: 10.1029/2012GL051169.![]() ![]() |
[7] |
A. Constantin, Some three-dimensional nonlinear equatorial flows, J. Phys. Oceanogr., 43 (2013), 165-175.
doi: 10.1175/JPO-D-12-062.1.![]() ![]() |
[8] |
A. Constantin, Some nonlinear, equatorially trapped, nonhydrostatic internal geophysical waves, J. Phys. Oceanogr., 44 (2014), 781-789.
doi: 10.1175/JPO-D-13-0174.1.![]() ![]() |
[9] |
A. Constantin and P. Germain, Instability of some equatorially trapped waves, J. Geophys. Res. Oceans, 118 (2013), 2802-2810.
doi: 10.1002/jgrc.20219.![]() ![]() |
[10] |
A. Constantin and R. S. Johnson, The dynamics of waves interacting with the Equatorial Undercurrent, Geophys. Astrophys. Fluid Dyn., 109 (2015), 311-358.
doi: 10.1080/03091929.2015.1066785.![]() ![]() ![]() |
[11] |
A. Constantin and R. S. Johnson, An exact, steady, purely azimuthal equatorial flow with a free surface, J. Phys. Oceanogr., 46 (2016), 1935-1945.
doi: 10.1175/JPO-D-15-0205.1.![]() ![]() |
[12] |
A. Constantin and R. S. Johnson, An exact, steady, purely azimuthal flow as a model for the Antarctic circumpolar current, J. Phys. Oceanogr., 46 (2016), 358503594.
doi: 10.1175/JPO-D-16-0121.1.![]() ![]() |
[13] |
A. Constantin and R. S. Johnson, A nonlinear, three-dimensional model for ocean flows, motivated by some observations of the pacific equatorial undercurrent and thermocline, Phys. Fluids, 29 (2017), 056604.
![]() |
[14] |
A. Constantin and S. G. Monismith, Gerstner waves in the presence of mean currents and rotation, J. Fluid Mech., 820 (2017), 511-528.
doi: 10.1017/jfm.2017.223.![]() ![]() ![]() |
[15] |
B. Cushman-Roisin and J. M. Beckers, Introduction to Geophysical Fluid Dynamics: Physical and Numerical Aspects, Academic, Waltham, Mass., 2011.
![]() ![]() |
[16] |
L. Fan and H. Gao, Instability of equatorial edge waves in the background flow, Proc. Amer. Math. Soc., 145 (2017), 765-778.
doi: 10.1090/proc/13308.![]() ![]() ![]() |
[17] |
L. Fan, H. Gao and Q. Xiao, An exact solution for geophysical trapped waves in the presence of an underlying current, Dyn. Partial Differ. Equ., 15 (2018), 201-214.
doi: 10.4310/DPDE.2018.v15.n3.a3.![]() ![]() ![]() |
[18] |
S. Friedlander and M. M. Vishik, Instability criteria for the flow of an inviscid incompressible fluid, Phys. Rev. Lett., 66 (1991), 2204-2206.
doi: 10.1103/PhysRevLett.66.2204.![]() ![]() ![]() |
[19] |
F. Genoud and D. Henry, Instability of equatorial water waves with an underlying current, J. Math. Fluid Mech., 16 (2014), 661-667.
doi: 10.1007/s00021-014-0175-4.![]() ![]() ![]() |
[20] |
F. Gerstner, Theorie der Wellen samt einer daraus abgeleiteten Theorie der Deichprofile, Ann. Phys., 2 (1809), 412-445.
![]() |
[21] |
A. E. Gill, Atmosphere-Ocean Dynamics, Academic, 1982.
![]() |
[22] |
D. Henry, On Gerstner's water wave, J. Nonlinear Math. Phys., 15 (2008), 87-95.
doi: 10.2991/jnmp.2008.15.S2.7.![]() ![]() ![]() |
[23] |
D. Henry, An exact solution for equatorial geophysical water waves with an underlying current, Eur. J. Mech. B Fluids, 38 (2013), 18-21.
doi: 10.1016/j.euromechflu.2012.10.001.![]() ![]() ![]() |
[24] |
D. Henry, Exact equatorial water waves in the $f$-plane, Nonlinear Anal. Real World Appl., 28 (2016), 284-289.
doi: 10.1016/j.nonrwa.2015.10.003.![]() ![]() ![]() |
[25] |
D. Henry, Equatorially trapped nonlinear water waves in a $\beta$-plane approximation with centripetal forces, J. Fluid Mech., 804 (2016), R1, 11 pp.
doi: 10.1017/jfm.2016.544.![]() ![]() ![]() |
[26] |
D. Henry, A modified equatorial $\beta$-plane approximation modelling nonlinear wave-current interactions, J. Differential Equations, 263 (2017), 2554-2566.
doi: 10.1016/j.jde.2017.04.007.![]() ![]() ![]() |
[27] |
D. Henry, On three-dimensional Gerstner-like equatorial water waves, Philos. Trans. Roy. Soc. A, 376 (2018), 20170088, 16 pp.
doi: 10.1098/rsta.2017.0088.![]() ![]() ![]() |
[28] |
D. Henry and H.-C. Hsu, Instability of Equatorial water waves in the $f$-plane, Discrete Contin. Dyn. Syst., 35 (2015), 909-916.
doi: 10.3934/dcds.2015.35.909.![]() ![]() ![]() |
[29] |
D. Henry and H.-C. Hsu, Instability of internal equatorial water waves, J. Differential Equations, 258 (2015), 1015-1024.
doi: 10.1016/j.jde.2014.08.019.![]() ![]() ![]() |
[30] |
H.-C. Hsu, An exact solution for equatorial waves, Monatsh. Math., 176 (2015), 143-152.
doi: 10.1007/s00605-014-0618-2.![]() ![]() ![]() |
[31] |
D. Ionescu-Kruse, An exact solution for geophysical edge waves in the $f$-plane approximation, Nonlinear Anal. Real World Appl., 24 (2015), 190-195.
doi: 10.1016/j.nonrwa.2015.02.002.![]() ![]() ![]() |
[32] |
D. Ionescu-Kruse, An exact solution for geophysical edge waves in the $\beta$-plane approximation, J. Math. Fluid Mech., 17 (2015), 699-706.
doi: 10.1007/s00021-015-0233-6.![]() ![]() ![]() |
[33] |
D. Ionescu-Kruse, Instability of equatorially trapped waves in stratified water, Ann. Mat. Pura Appl., 195 (2016), 585-599.
doi: 10.1007/s10231-015-0479-x.![]() ![]() ![]() |
[34] |
D. Ionescu-Kruse, Instability of Pollard's exact solution for geophysical ocean flows, Phys. Fluids, 28 (2016), 086601.
doi: 10.1063/1.4959289.![]() ![]() |
[35] |
D. Ionescu-Kruse, On the short-wavelength stabilities of some geophysical flows, Phil. Trans. R. Soc. A, 376 (2017), 20170090, 21pp.
doi: 10.1098/rsta.2017.0090.![]() ![]() ![]() |
[36] |
D. Ionescu-Kruse, A three-dimensional autonomous nonlinear dynamical system modelling equatorial ocean flows, J. Differential Equations, 264 (2018), 4650-4668.
doi: 10.1016/j.jde.2017.12.021.![]() ![]() ![]() |
[37] |
R. S. Johnson, Application of the ideas and techniques of classical fluid mechanics to some problems in physical oceanography, Philos. Trans. R. Soc. A, 376 (2018), 20170092, 19 pp.
doi: 10.1098/rsta.2017.0092.![]() ![]() ![]() |
[38] |
M. Kluczek, Physical flow properties for Pollard-like internal water waves, J. Math. Phys., 59 (2018), 123102, 12pp.
doi: 10.1063/1.5038657.![]() ![]() ![]() |
[39] |
M. Kluczek, Exact Pollard-like internal eater waves, J. Nonlinear Math. Phys., 26 (2019), 133-146.
doi: 10.1080/14029251.2019.1544794.![]() ![]() ![]() |
[40] |
H. Lamb, Hydrodynamics, Reprint of the 1932 sixth edition. With a foreword by R. A. Caflisch [Russel E. Caflisch]. Cambridge Mathematical Library. Cambridge University Press, Cambridge, 1993.
![]() ![]() |
[41] |
S. Leblanc, Local stability of Gerstner's waves, J. Fluid Mech., 506 (2004), 245-254.
doi: 10.1017/S0022112004008444.![]() ![]() ![]() |
[42] |
A. Lifschitz and E. Hameiri, Local stability conditions in fluid mechanics, Phys. Fluids, 3 (1991), 2644-2651.
doi: 10.1063/1.858153.![]() ![]() ![]() |
[43] |
A.-V. Matioc, An exact solution for geophysical equatorial edge waves over a sloping beach, J. Phys. A, 45 (2012), 365501, 10pp.
doi: 10.1088/1751-8113/45/36/365501.![]() ![]() ![]() |
[44] |
A.-V. Matioc, Exact geophysical waves in stratified fluids, Appl. Anal., 92 (2013), 2254-2261.
doi: 10.1080/00036811.2012.727987.![]() ![]() ![]() |
[45] |
R. T. Pollard, Surface waves with rotation: An exact solution, J. Geophys. Res., 75 (1970), 5895-5898.
doi: 10.1029/JC075i030p05895.![]() ![]() |
[46] |
A. Rodríguez-Sanjurjo, Global diffeomorphism of the Lagrangian flow-map for equatorially-trapped internal water waves, Nonlinear Anal., 149 (2017), 156-164.
doi: 10.1016/j.na.2016.10.022.![]() ![]() ![]() |
[47] |
A. Rodríguez-Sanjurjo, Global diffeomorphism of the Lagrangian flow-map for Pollard-like solutions, Ann. Mat. Pura Appl., 197 (2018), 1787-1797.
doi: 10.1007/s10231-018-0749-5.![]() ![]() ![]() |
[48] |
S. Sastre-Gomez, Global diffeomorphism of the Lagrangian flow-map defining equatorially trapped water waves, Nonlinear Anal., 125 (2015), 725-731.
doi: 10.1016/j.na.2015.06.017.![]() ![]() ![]() |
[49] |
G. K. Vallis, Atmospheric and Oceanic Fluid Dynamics, Cambridge University Press, 2006.
![]() |
The rotating framework with the origin at a point on the Earth's surface with latitude