
-
Previous Article
Existence of solutions for nonlinear operator equations
- DCDS Home
- This Issue
-
Next Article
Exact solution and instability for geophysical waves at arbitrary latitude
Study of an elliptic partial differential equation modelling the Antarctic Circumpolar Current
Fakultät für Mathematik, Universität Wien, Oskar-Morgenstern-Platz 1, Wien 1090, Austria |
We consider the ocean flow of the Antarctic Circumpolar Current. Using a recently-derived model for gyres in rotating spherical coordinates, and mapping the problem on the sphere onto the plane using the Mercator projection, we obtain a boundary-value problem for a semi-linear elliptic partial differential equation. For constant and linear oceanic vorticities, we investigate existence, regularity and uniqueness of solutions to this elliptic problem. We also provide some explicit solutions. Moreover, we examine the physical relevance of these results.
References:
[1] |
M. Abramowitz and I. Stegun, Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, Dover Publications, INC., New York, 1965. Google Scholar |
[2] |
G. E. Andrews, R. Askey and R. Roy, Special Functions, Cambridge University Press, 1999.
doi: 10.1017/CBO9781107325937. |
[3] |
H. Berestycki, L. Nirenberg and S. R. S. Varadhan,
The principal eigenvalue and maximum principle for second-order elliptic operators in general domains, Comm. Pure Appl. Math., 47 (1994), 47-92.
doi: 10.1002/cpa.3160470105. |
[4] |
H. Brézis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, 2011. |
[5] |
A. Constantin and R. S. Johnson, Large gyres as a shallow-water asymptotic solution of Euler's equation in spherical coordinates, Proc. Roy. Soc. London Ser. A, 473 (2017), 20170063, 17pp.
doi: 10.1098/rspa.2017.0063. |
[6] |
A. Constantin and R. S. Johnson,
An exact, steady, purely azimuthal flow as a model for the Antarctic Circumpolar Current, J. Phys. Oceanogr., 46 (2016), 3585-3594.
doi: 10.1175/JPO-D-16-0121.1. |
[7] |
A. Constantin and S. G. Monismith,
Gerstner waves in the presence of mean currents and rotation, J. Fluid Mech., 820 (2017), 511-528.
doi: 10.1017/jfm.2017.223. |
[8] |
A. Constantin, W. Strauss and E. Varvaruca,
Global bifurcation of steady gravity water waves with critical layers, Acta Mathematica, 217 (2016), 195-262.
doi: 10.1007/s11511-017-0144-x. |
[9] |
D. Daners,
The Mercator and stereographic projections, and many in between, Amer. Math. Monthly, 119 (2012), 199-210.
doi: 10.4169/amer.math.monthly.119.03.199. |
[10] |
P. J. Dellar,
Variations on a beta-plane: Derivation of non-traditional beta-plane equations from Hamilton's principle on a sphere, J. Fluid Mech., 674 (2011), 174-195.
doi: 10.1017/S0022112010006464. |
[11] |
J. A. Ewing,
Wind, wave and current data for the design of ships and offshore structures, Marine Structures, 3 (1990), 421-459.
doi: 10.1016/0951-8339(90)90001-8. |
[12] |
S. V. Haziot, Explicit two-dimensional solutions for the ocean flow in arctic gyres, Monatshefte für Mathematik, (2018), 1–12.
doi: 10.1007/s00605-018-1198-3. |
[13] |
H.-C. Hsu and C. I. Martin,
On the existence of solutions and the pressure function related to the Antarctic Circumpolar Current, Nonlinear Anal., 155 (2017), 285-293.
doi: 10.1016/j.na.2017.02.021. |
[14] |
C.W. Hughes, Nonlinear vorticity balance of the Antarctic Circumpolar Current, Journal of Geophysical Research, 110 (2005).
doi: 10.1029/2004JC002753. |
[15] |
I. G. Jonsson, Wave-current interactions, in The Sea, B. Le Méhauté, D.M. Hanes (Eds.), Ocean Eng. Sc., 9 (1990), 65-120. Google Scholar |
[16] |
E. Kamke, Differentialgleichungen: Lösungensmethoden und Lösungen, Neunte Auflage. Mit einem Vorwort von Detlef Kamke. B. G. Teubner, Stuttgart, 1977. |
[17] |
K. Marynets,
Two-point boundary problem for modeling the jet flow of the Antarctic Circumpolar Current, Electronic Journal of Differential Equations, 56 (2018), 1-12.
|
[18] |
M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, Springer-Verlag, New York, 1984.
doi: 10.1007/978-1-4612-5282-5. |
[19] |
R. Quirchmayr,
A steady, purely azimuthal flow model for the Antarctic Circumpolar Current, Monatshefte für Mathematik, 187 (2018), 565-572.
doi: 10.1007/s00605-017-1097-z. |
[20] |
B. Riffenburgh, Encyclopedia of the Antarctic, Routledge, 2007. Google Scholar |
[21] |
S. R. Rintoul,
Southern Ocean currents and climate, Papers and Proceedings of the Royal Society of Tasmania, 133 (2000), 41-50.
doi: 10.26749/rstpp.133.3.41. |
[22] |
G. Szego,
Inequalities for the zeros of Legendre Polynomials and related functions, Transactions of the American Mathematical Society, 39 (1936), 1-17.
doi: 10.1090/S0002-9947-1936-1501831-2. |
[23] |
G. P. Thomas, Wave-current interactions: An experimental and numerical study, J. Fluid Mech., 216 (1990), 505-536. Google Scholar |
[24] | G. K. Vallis, Atmosphere and Ocean Fluid Dynamics, Cambridge University Press, 2006. Google Scholar |
[25] |
D. W. H. Walton, Antarctica: Global Science from a Frozen Continent, Cambridge University Press, Cambridge, 2013.
doi: 10.1017/CBO9780511782299.![]() |
[26] |
V. Zeitlin, Geophysical Fluid Dynamics: Understanding (Almost) Everything with Rotating Shallow Water Models, Oxford University Press, 2018. Google Scholar |
show all references
References:
[1] |
M. Abramowitz and I. Stegun, Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, Dover Publications, INC., New York, 1965. Google Scholar |
[2] |
G. E. Andrews, R. Askey and R. Roy, Special Functions, Cambridge University Press, 1999.
doi: 10.1017/CBO9781107325937. |
[3] |
H. Berestycki, L. Nirenberg and S. R. S. Varadhan,
The principal eigenvalue and maximum principle for second-order elliptic operators in general domains, Comm. Pure Appl. Math., 47 (1994), 47-92.
doi: 10.1002/cpa.3160470105. |
[4] |
H. Brézis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, 2011. |
[5] |
A. Constantin and R. S. Johnson, Large gyres as a shallow-water asymptotic solution of Euler's equation in spherical coordinates, Proc. Roy. Soc. London Ser. A, 473 (2017), 20170063, 17pp.
doi: 10.1098/rspa.2017.0063. |
[6] |
A. Constantin and R. S. Johnson,
An exact, steady, purely azimuthal flow as a model for the Antarctic Circumpolar Current, J. Phys. Oceanogr., 46 (2016), 3585-3594.
doi: 10.1175/JPO-D-16-0121.1. |
[7] |
A. Constantin and S. G. Monismith,
Gerstner waves in the presence of mean currents and rotation, J. Fluid Mech., 820 (2017), 511-528.
doi: 10.1017/jfm.2017.223. |
[8] |
A. Constantin, W. Strauss and E. Varvaruca,
Global bifurcation of steady gravity water waves with critical layers, Acta Mathematica, 217 (2016), 195-262.
doi: 10.1007/s11511-017-0144-x. |
[9] |
D. Daners,
The Mercator and stereographic projections, and many in between, Amer. Math. Monthly, 119 (2012), 199-210.
doi: 10.4169/amer.math.monthly.119.03.199. |
[10] |
P. J. Dellar,
Variations on a beta-plane: Derivation of non-traditional beta-plane equations from Hamilton's principle on a sphere, J. Fluid Mech., 674 (2011), 174-195.
doi: 10.1017/S0022112010006464. |
[11] |
J. A. Ewing,
Wind, wave and current data for the design of ships and offshore structures, Marine Structures, 3 (1990), 421-459.
doi: 10.1016/0951-8339(90)90001-8. |
[12] |
S. V. Haziot, Explicit two-dimensional solutions for the ocean flow in arctic gyres, Monatshefte für Mathematik, (2018), 1–12.
doi: 10.1007/s00605-018-1198-3. |
[13] |
H.-C. Hsu and C. I. Martin,
On the existence of solutions and the pressure function related to the Antarctic Circumpolar Current, Nonlinear Anal., 155 (2017), 285-293.
doi: 10.1016/j.na.2017.02.021. |
[14] |
C.W. Hughes, Nonlinear vorticity balance of the Antarctic Circumpolar Current, Journal of Geophysical Research, 110 (2005).
doi: 10.1029/2004JC002753. |
[15] |
I. G. Jonsson, Wave-current interactions, in The Sea, B. Le Méhauté, D.M. Hanes (Eds.), Ocean Eng. Sc., 9 (1990), 65-120. Google Scholar |
[16] |
E. Kamke, Differentialgleichungen: Lösungensmethoden und Lösungen, Neunte Auflage. Mit einem Vorwort von Detlef Kamke. B. G. Teubner, Stuttgart, 1977. |
[17] |
K. Marynets,
Two-point boundary problem for modeling the jet flow of the Antarctic Circumpolar Current, Electronic Journal of Differential Equations, 56 (2018), 1-12.
|
[18] |
M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, Springer-Verlag, New York, 1984.
doi: 10.1007/978-1-4612-5282-5. |
[19] |
R. Quirchmayr,
A steady, purely azimuthal flow model for the Antarctic Circumpolar Current, Monatshefte für Mathematik, 187 (2018), 565-572.
doi: 10.1007/s00605-017-1097-z. |
[20] |
B. Riffenburgh, Encyclopedia of the Antarctic, Routledge, 2007. Google Scholar |
[21] |
S. R. Rintoul,
Southern Ocean currents and climate, Papers and Proceedings of the Royal Society of Tasmania, 133 (2000), 41-50.
doi: 10.26749/rstpp.133.3.41. |
[22] |
G. Szego,
Inequalities for the zeros of Legendre Polynomials and related functions, Transactions of the American Mathematical Society, 39 (1936), 1-17.
doi: 10.1090/S0002-9947-1936-1501831-2. |
[23] |
G. P. Thomas, Wave-current interactions: An experimental and numerical study, J. Fluid Mech., 216 (1990), 505-536. Google Scholar |
[24] | G. K. Vallis, Atmosphere and Ocean Fluid Dynamics, Cambridge University Press, 2006. Google Scholar |
[25] |
D. W. H. Walton, Antarctica: Global Science from a Frozen Continent, Cambridge University Press, Cambridge, 2013.
doi: 10.1017/CBO9780511782299.![]() |
[26] |
V. Zeitlin, Geophysical Fluid Dynamics: Understanding (Almost) Everything with Rotating Shallow Water Models, Oxford University Press, 2018. Google Scholar |

[1] |
Christian Clason, Vu Huu Nhu, Arnd Rösch. Optimal control of a non-smooth quasilinear elliptic equation. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020052 |
[2] |
Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119 |
[3] |
Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261 |
[4] |
Neil S. Trudinger, Xu-Jia Wang. Quasilinear elliptic equations with signed measure. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 477-494. doi: 10.3934/dcds.2009.23.477 |
[5] |
Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272 |
[6] |
Lucio Damascelli, Filomena Pacella. Sectional symmetry of solutions of elliptic systems in cylindrical domains. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3305-3325. doi: 10.3934/dcds.2020045 |
[7] |
Ole Løseth Elvetun, Bjørn Fredrik Nielsen. A regularization operator for source identification for elliptic PDEs. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021006 |
[8] |
Pierre Baras. A generalization of a criterion for the existence of solutions to semilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 465-504. doi: 10.3934/dcdss.2020439 |
[9] |
Nahed Naceur, Nour Eddine Alaa, Moez Khenissi, Jean R. Roche. Theoretical and numerical analysis of a class of quasilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 723-743. doi: 10.3934/dcdss.2020354 |
[10] |
João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138 |
[11] |
Gabrielle Nornberg, Delia Schiera, Boyan Sirakov. A priori estimates and multiplicity for systems of elliptic PDE with natural gradient growth. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3857-3881. doi: 10.3934/dcds.2020128 |
[12] |
Anna Anop, Robert Denk, Aleksandr Murach. Elliptic problems with rough boundary data in generalized Sobolev spaces. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020286 |
[13] |
Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310 |
[14] |
Hongbo Guan, Yong Yang, Huiqing Zhu. A nonuniform anisotropic FEM for elliptic boundary layer optimal control problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1711-1722. doi: 10.3934/dcdsb.2020179 |
[15] |
Marc Homs-Dones. A generalization of the Babbage functional equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 899-919. doi: 10.3934/dcds.2020303 |
[16] |
Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075 |
[17] |
Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020436 |
[18] |
Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020340 |
[19] |
Yunfeng Jia, Yi Li, Jianhua Wu, Hong-Kun Xu. Cauchy problem of semilinear inhomogeneous elliptic equations of Matukuma-type with multiple growth terms. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3485-3507. doi: 10.3934/dcds.2019227 |
[20] |
Jann-Long Chern, Sze-Guang Yang, Zhi-You Chen, Chih-Her Chen. On the family of non-topological solutions for the elliptic system arising from a product Abelian gauge field theory. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3291-3304. doi: 10.3934/dcds.2020127 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]