August  2019, 39(8): 4429-4441. doi: 10.3934/dcds.2019180

Existence of solutions for nonlinear operator equations

1. 

School of Mathematical Science, Nanjing Normal University, Nanjing 210023, China

2. 

Danyang Normal School, Zhenjiang College, Zhenjiang 212300, China

* Corresponding author: Yujun Dong at yjdong@njnu.edu.cn

Received  July 2018 Published  May 2019

We investigate solutions for nonlinear operator equations and obtain some abstract existence results by linking methods. Some well-known theorems about periodic solutions for second-order Hamiltonian systems by M. Schechter are special cases of these results.

Citation: Yucheng Bu, Yujun Dong. Existence of solutions for nonlinear operator equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (8) : 4429-4441. doi: 10.3934/dcds.2019180
References:
[1]

G. BonannoR. Livrea and M. Schechter, Multiple solutions of second order Hamiltonian systems, Electron. J. Qual. Theory Differ. Equ., 33 (2017), 1-15.  doi: 10.14232/ejqtde.2017.1.33.  Google Scholar

[2]

Y. ChenY. Dong and Y. Shan, Existence of solutions for sublinear or superlinear operator equations, Sci. China Math., 58 (2015), 1653-1664.  doi: 10.1007/s11425-014-4966-0.  Google Scholar

[3] Y. Dong, Index Theory for Hamiltonian Systems and Multiple Solutions Problems, Science Press, Beijing, 2014.   Google Scholar
[4]

L. Li and M. Schechter, Existence of solutions for second order Hamiltonian systems, Nonlinear Anal. Real World Appl., 27 (2016), 283-296.  doi: 10.1016/j.nonrwa.2015.08.001.  Google Scholar

[5]

J. Pipan and M. Schechter, Non-autonomous second order Hamiltonian systems, J. Differential Equations, 257 (2014), 351-373.  doi: 10.1016/j.jde.2014.03.016.  Google Scholar

[6]

M. Schechter, Periodic solutions of second-order nonautonomous dynamical systems, Bound. Value Probl., 2006 (2006), Art. ID 25104, 9pp. doi: 10.1155/bvp/2006/25104.  Google Scholar

[7]

M. Schechter, Periodic non-autonomous second order dynamical systems, J. Differential Equations, 223 (2006), 290-302.  doi: 10.1016/j.jde.2005.02.022.  Google Scholar

[8]

M. Schechter, Minmax Systems and Critical Point Theory, Birkh$\ddot{a}$user, Boston, 2009. Google Scholar

[9]

M. Schechter, Linking Methods in Critical Point Theory, Birkh$\ddot{a}$user, Boston, 1999. Google Scholar

[10]

M. Schechter, Nonautonomous second order Hamiltonian systems, Pacific J. Math., 251 (2011), 431-452.  doi: 10.2140/pjm.2011.251.431.  Google Scholar

[11]

Z. Wang and J. Zhang, New existence results on periodic solutions of non-autonomous second order Hamiltonian systems, Appl. Math. Lett., 79 (2018), 43-50.  doi: 10.1016/j.aml.2017.11.016.  Google Scholar

[12]

X. Zhang and X. Tang, Some united existence results of periodic solutions for non-quadratic second order Hamiltonian systems, Commun. Pure Appl. Anal., 13 (2014), 75-95.  doi: 10.3934/cpaa.2014.13.75.  Google Scholar

[13]

W. Zou and S. Li, On Schechter's linking theorems, J. Funct. Anal., 258 (2010), 3347-3361.  doi: 10.1016/j.jfa.2009.11.005.  Google Scholar

show all references

References:
[1]

G. BonannoR. Livrea and M. Schechter, Multiple solutions of second order Hamiltonian systems, Electron. J. Qual. Theory Differ. Equ., 33 (2017), 1-15.  doi: 10.14232/ejqtde.2017.1.33.  Google Scholar

[2]

Y. ChenY. Dong and Y. Shan, Existence of solutions for sublinear or superlinear operator equations, Sci. China Math., 58 (2015), 1653-1664.  doi: 10.1007/s11425-014-4966-0.  Google Scholar

[3] Y. Dong, Index Theory for Hamiltonian Systems and Multiple Solutions Problems, Science Press, Beijing, 2014.   Google Scholar
[4]

L. Li and M. Schechter, Existence of solutions for second order Hamiltonian systems, Nonlinear Anal. Real World Appl., 27 (2016), 283-296.  doi: 10.1016/j.nonrwa.2015.08.001.  Google Scholar

[5]

J. Pipan and M. Schechter, Non-autonomous second order Hamiltonian systems, J. Differential Equations, 257 (2014), 351-373.  doi: 10.1016/j.jde.2014.03.016.  Google Scholar

[6]

M. Schechter, Periodic solutions of second-order nonautonomous dynamical systems, Bound. Value Probl., 2006 (2006), Art. ID 25104, 9pp. doi: 10.1155/bvp/2006/25104.  Google Scholar

[7]

M. Schechter, Periodic non-autonomous second order dynamical systems, J. Differential Equations, 223 (2006), 290-302.  doi: 10.1016/j.jde.2005.02.022.  Google Scholar

[8]

M. Schechter, Minmax Systems and Critical Point Theory, Birkh$\ddot{a}$user, Boston, 2009. Google Scholar

[9]

M. Schechter, Linking Methods in Critical Point Theory, Birkh$\ddot{a}$user, Boston, 1999. Google Scholar

[10]

M. Schechter, Nonautonomous second order Hamiltonian systems, Pacific J. Math., 251 (2011), 431-452.  doi: 10.2140/pjm.2011.251.431.  Google Scholar

[11]

Z. Wang and J. Zhang, New existence results on periodic solutions of non-autonomous second order Hamiltonian systems, Appl. Math. Lett., 79 (2018), 43-50.  doi: 10.1016/j.aml.2017.11.016.  Google Scholar

[12]

X. Zhang and X. Tang, Some united existence results of periodic solutions for non-quadratic second order Hamiltonian systems, Commun. Pure Appl. Anal., 13 (2014), 75-95.  doi: 10.3934/cpaa.2014.13.75.  Google Scholar

[13]

W. Zou and S. Li, On Schechter's linking theorems, J. Funct. Anal., 258 (2010), 3347-3361.  doi: 10.1016/j.jfa.2009.11.005.  Google Scholar

[1]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[2]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[3]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[4]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[5]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[6]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[7]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[8]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[9]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[10]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[11]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[12]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[13]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[14]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[15]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[16]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[17]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[18]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[19]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[20]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (151)
  • HTML views (146)
  • Cited by (0)

Other articles
by authors

[Back to Top]