
-
Previous Article
A quasi-linear nonlocal Venttsel' problem of Ambrosetti–Prodi type on fractal domains
- DCDS Home
- This Issue
-
Next Article
Weak periodic solutions and numerical case studies of the Fornberg-Whitham equation
Geophysical internal equatorial waves of extreme form
Department of Computing & Mathematics, Waterford Institute of Technology, Waterford, Ireland |
The existence of internal geophysical waves of extreme form is confirmed and an explicit solution presented. The flow is confined to a layer lying above an eastward current while the mean horizontal flow of the solutions is westward, thus incorporating flow reversal in the fluid.
References:
[1] |
C. J. Amick, L. E. Fraenkel and J. F. Toland,
On the Stokes conjecture for the wave of extreme form, Acta Math., 148 (1982), 193-214.
doi: 10.1007/BF02392728. |
[2] |
A. Bennett, Lagrangian Fluid Dynamics, Cambridge Monographs on Mechanics, Cambridge University Press, 2006.
doi: 10.1017/CBO9780511734939.![]() ![]() ![]() |
[3] |
B. Buffoni and J. Toland, Analytic Theory of Global Bifurcation, Princeton University Press, 2003.
doi: 10.1515/9781400884339.![]() ![]() ![]() |
[4] |
A. Compelli and R. Ivanov,
On the dynamics of internal waves interacting with the equatorial undercurrent, J. Nonlin. Math. Phys., 22 (2015), 531-539.
doi: 10.1080/14029251.2015.1113052. |
[5] |
A. Constantin,
On the deep water wave motion, J. Phys. A, 34 (2001), 1405-1417.
doi: 10.1088/0305-4470/34/7/313. |
[6] |
A. Constantin, Nonlinear Water Waves with Applications to Wave-Current Interactions and Tsunamis, vol. 81 of CBMS-NSF Regional Conference Series in Applied Mathematics, SIAM, Philadelphia, 2011.
doi: 10.1137/1.9781611971873. |
[7] |
A. Constantin, An exact solution for equatorially trapped waves, J. Geophys. Res. Oceans, 117 (2012).
doi: 10.1029/2012JC007879. |
[8] |
A. Constantin, On the modelling of equatorial waves, Geophys. Res. Lett., 39 (2012).
doi: 10.1029/2012GL051169. |
[9] |
A. Constantin,
Particle trajectories in extreme Stokes waves, IMA J. Appl. Math., 77 (2012), 293-307.
doi: 10.1093/imamat/hxs033. |
[10] |
A. Constantin,
Some three-dimensional nonlinear equatorial flows, J. Phys. Oceanog., 43 (2013), 165-175.
doi: 10.1175/JPO-D-12-062.1. |
[11] |
A. Constantin,
Some nonlinear, equatorially trapped, nonhydrostatic internal geophysical waves, J. Phys. Oceanogr., 44 (2014), 781-789.
doi: 10.1175/JPO-D-13-0174.1. |
[12] |
A. Constantin and P. Germain,
Instability of some equatorially trapped waves, J. Geophys. Res. Oceans, 118 (2013), 2802-2810.
doi: 10.1002/jgrc.20219. |
[13] |
A. Constantin and R. S. Johnson, A nonlinear, three-dimensional model for ocean flows, motivated by some observations of the Pacific Equatorial Undercurrent and thermocline, Phys. Fluids, 29 (2017), 056604. |
[14] |
A. Constantin and S. G. Monismith,
Gerstner waves in the presence of mean currents and rotation, J. Fluid Mech., 820 (2017), 511-528.
doi: 10.1017/jfm.2017.223. |
[15] |
R. Courant, Differential and Integral Calculus, John Wiley & Sons, Inc., New York, 1988. |
[16] |
B. Cushman-Roisin and J. M. Beckers, Introduction to Geophysical Fluid Dynamics: Physical and Numerical Aspects, vol. 101, Academic Press, 2011. |
[17] |
M. L. Dubreil-Jacotin,
Sur les ondes de type permanent dans les liquides, Atti. Accad. Naz. Lincei, Mem. Cl. Sci. Fis. Mat. Nat., 15 (1932), 814-819.
|
[18] |
F. Genoud and D. Henry,
Instability of equatorial water waves with an underlying current, J. Math. Fluid Mech., 16 (2014), 661-667.
doi: 10.1007/s00021-014-0175-4. |
[19] |
F. Gerstner,
Theorie der wellen samt einer daraus abgeleiteten theorie der deichprofile, Ann. Phys., 2 (1809), 412-445.
|
[20] |
H. Goldstein, C. P. Poole and J. L. Safko, Classical Mechanics, Pearson International Edition, Addison Wesley, 2002. |
[21] |
D. Henry,
On Gerstner's water wave, J. Nonlin. Math. Phys., 15 (2008), 87-95.
doi: 10.2991/jnmp.2008.15.S2.7. |
[22] |
D. Henry,
An exact solution for equatorial geophysical water waves with an underlying current, Eur. J. Mech. B Fluids, 38 (2013), 18-21.
doi: 10.1016/j.euromechflu.2012.10.001. |
[23] |
D. Henry, On three-dimensional Gerstner-like equatorial water waves, Phil. Trans. R. Soc. A, 376 (2018), 20170088, 16pp.
doi: 10.1098/rsta.2017.0088. |
[24] |
D. Henry and H. C. Hsu,
Instability of internal equatorial water waves, J. Diff. Eqn., 258 (2015), 1015-1024.
doi: 10.1016/j.jde.2014.08.019. |
[25] |
D. Henry and S. Sastre-Gomez,
Mean flow velocities and mass transport for equatorially-trapped water waves with an underlying current, J. Math. Fluid Mech., 18 (2016), 795-804.
doi: 10.1007/s00021-016-0262-9. |
[26] |
D. Ionescu-Kruse, On the short-wavelength stabilities of some geophysical flows, Phil. Trans. R. Soc. A, 376 (2018), 20170090, 21pp.
doi: 10.1098/rsta.2017.0090. |
[27] |
M. Kluczek,
Exact and explicit internal equatorial water waves with underlying currents, J. Math. Fluid Mech., 19 (2017), 305-314.
doi: 10.1007/s00021-016-0281-6. |
[28] |
T. Lyons,
Particle trajectories in extreme Stokes waves over infinite depth, Disc. Contin. Dyn. Sys. Ser. A, 34 (2014), 3095-3107.
doi: 10.3934/dcds.2014.34.3095. |
[29] |
T. Lyons,
The pressure distribution in extreme Stokes waves, Nonlin. Anal. Real World Appl., 31 (2016), 77-87.
doi: 10.1016/j.nonrwa.2016.01.008. |
[30] |
T. Lyons, The pressure in a deep-water Stokes wave of greatest height, J. Math. Fluid Mech., 18 (2016), 209–218.
doi: 10.1007/s00021-016-0249-6. |
[31] |
T. Lyons, The dynamic pressure in deep-water extreme Stokes waves, Phil. Trans. R. Soc. A, 376 (2018), 20170095, 13pp.
doi: 10.1098/rsta.2017.0095. |
[32] |
C. I. Martin,
Dynamics of the thermocline in the equatorial region of the pacific ocean, J. Nonlin. Math. Phys., 22 (2015), 516-522.
doi: 10.1080/14029251.2015.1113049. |
[33] |
A. V. Matioc,
Exact geophysical waves in stratified fluids, Appl, Anal., 92 (2013), 2254-2261.
doi: 10.1080/00036811.2012.727987. |
[34] |
W. J. M. Rankine,
On the exact form of waves near the surface of deep water, Philos. Trans. R. Soc. London A, 153 (1863), 127-138.
|
[35] |
A. Rodriguez-Sanjurjo,
Global diffeomorphism of the Lagrangian flow-map for Equatorially-trapped internal water waves, Nonlin. Anal.: Theor., Meth. Appl., 149 (2017), 156-164.
doi: 10.1016/j.na.2016.10.022. |
[36] |
A. Rodriguez-Sanjurjo and M. Kluczek,
Mean flow properties for equatorially trapped internal water wave–current interactions, Appl. Anal., 96 (2017), 2333-2345.
doi: 10.1080/00036811.2016.1221943. |
[37] |
K. W. S and M. M. J,
Oceaninc equatorial waves and the 1991–1993 El Niño, J. Climate, 8 (1995), 1757-1774.
|
[38] |
S. Sastre-Gomez,
Global diffeomorphism of the Lagrangian flow-map defining equatorially trapped water waves, Nonlin. Anal., 125 (2015), 725-731.
doi: 10.1016/j.na.2015.06.017. |
[39] |
G. G. Stokes,
Considerations relative to the greatest height of oscillatory irrotational waves which can be propagated without change of form, Mathematical and Physical Papers, 1 (1880), 225-228.
|
[40] |
J. F. Toland,
Stokes waves, Topol. Meth. Nonlin. Anal., 7 (1996), 1-48.
doi: 10.12775/TMNA.1996.001. |
[41] |
G. K. Vallis, D. J. Parker and S. M. Tobias,
A simple system for moist convection: The rainy-Benard model, J. Fluid Mech., 862 (2019), 162-199.
doi: 10.1017/jfm.2018.954. |
[42] |
S. H. C. Wacogne, Dynamics of the Equatorial Undercurrent and Its Termination, PhD thesis, Massachusetts Institute of Technology, 1988. |
show all references
References:
[1] |
C. J. Amick, L. E. Fraenkel and J. F. Toland,
On the Stokes conjecture for the wave of extreme form, Acta Math., 148 (1982), 193-214.
doi: 10.1007/BF02392728. |
[2] |
A. Bennett, Lagrangian Fluid Dynamics, Cambridge Monographs on Mechanics, Cambridge University Press, 2006.
doi: 10.1017/CBO9780511734939.![]() ![]() ![]() |
[3] |
B. Buffoni and J. Toland, Analytic Theory of Global Bifurcation, Princeton University Press, 2003.
doi: 10.1515/9781400884339.![]() ![]() ![]() |
[4] |
A. Compelli and R. Ivanov,
On the dynamics of internal waves interacting with the equatorial undercurrent, J. Nonlin. Math. Phys., 22 (2015), 531-539.
doi: 10.1080/14029251.2015.1113052. |
[5] |
A. Constantin,
On the deep water wave motion, J. Phys. A, 34 (2001), 1405-1417.
doi: 10.1088/0305-4470/34/7/313. |
[6] |
A. Constantin, Nonlinear Water Waves with Applications to Wave-Current Interactions and Tsunamis, vol. 81 of CBMS-NSF Regional Conference Series in Applied Mathematics, SIAM, Philadelphia, 2011.
doi: 10.1137/1.9781611971873. |
[7] |
A. Constantin, An exact solution for equatorially trapped waves, J. Geophys. Res. Oceans, 117 (2012).
doi: 10.1029/2012JC007879. |
[8] |
A. Constantin, On the modelling of equatorial waves, Geophys. Res. Lett., 39 (2012).
doi: 10.1029/2012GL051169. |
[9] |
A. Constantin,
Particle trajectories in extreme Stokes waves, IMA J. Appl. Math., 77 (2012), 293-307.
doi: 10.1093/imamat/hxs033. |
[10] |
A. Constantin,
Some three-dimensional nonlinear equatorial flows, J. Phys. Oceanog., 43 (2013), 165-175.
doi: 10.1175/JPO-D-12-062.1. |
[11] |
A. Constantin,
Some nonlinear, equatorially trapped, nonhydrostatic internal geophysical waves, J. Phys. Oceanogr., 44 (2014), 781-789.
doi: 10.1175/JPO-D-13-0174.1. |
[12] |
A. Constantin and P. Germain,
Instability of some equatorially trapped waves, J. Geophys. Res. Oceans, 118 (2013), 2802-2810.
doi: 10.1002/jgrc.20219. |
[13] |
A. Constantin and R. S. Johnson, A nonlinear, three-dimensional model for ocean flows, motivated by some observations of the Pacific Equatorial Undercurrent and thermocline, Phys. Fluids, 29 (2017), 056604. |
[14] |
A. Constantin and S. G. Monismith,
Gerstner waves in the presence of mean currents and rotation, J. Fluid Mech., 820 (2017), 511-528.
doi: 10.1017/jfm.2017.223. |
[15] |
R. Courant, Differential and Integral Calculus, John Wiley & Sons, Inc., New York, 1988. |
[16] |
B. Cushman-Roisin and J. M. Beckers, Introduction to Geophysical Fluid Dynamics: Physical and Numerical Aspects, vol. 101, Academic Press, 2011. |
[17] |
M. L. Dubreil-Jacotin,
Sur les ondes de type permanent dans les liquides, Atti. Accad. Naz. Lincei, Mem. Cl. Sci. Fis. Mat. Nat., 15 (1932), 814-819.
|
[18] |
F. Genoud and D. Henry,
Instability of equatorial water waves with an underlying current, J. Math. Fluid Mech., 16 (2014), 661-667.
doi: 10.1007/s00021-014-0175-4. |
[19] |
F. Gerstner,
Theorie der wellen samt einer daraus abgeleiteten theorie der deichprofile, Ann. Phys., 2 (1809), 412-445.
|
[20] |
H. Goldstein, C. P. Poole and J. L. Safko, Classical Mechanics, Pearson International Edition, Addison Wesley, 2002. |
[21] |
D. Henry,
On Gerstner's water wave, J. Nonlin. Math. Phys., 15 (2008), 87-95.
doi: 10.2991/jnmp.2008.15.S2.7. |
[22] |
D. Henry,
An exact solution for equatorial geophysical water waves with an underlying current, Eur. J. Mech. B Fluids, 38 (2013), 18-21.
doi: 10.1016/j.euromechflu.2012.10.001. |
[23] |
D. Henry, On three-dimensional Gerstner-like equatorial water waves, Phil. Trans. R. Soc. A, 376 (2018), 20170088, 16pp.
doi: 10.1098/rsta.2017.0088. |
[24] |
D. Henry and H. C. Hsu,
Instability of internal equatorial water waves, J. Diff. Eqn., 258 (2015), 1015-1024.
doi: 10.1016/j.jde.2014.08.019. |
[25] |
D. Henry and S. Sastre-Gomez,
Mean flow velocities and mass transport for equatorially-trapped water waves with an underlying current, J. Math. Fluid Mech., 18 (2016), 795-804.
doi: 10.1007/s00021-016-0262-9. |
[26] |
D. Ionescu-Kruse, On the short-wavelength stabilities of some geophysical flows, Phil. Trans. R. Soc. A, 376 (2018), 20170090, 21pp.
doi: 10.1098/rsta.2017.0090. |
[27] |
M. Kluczek,
Exact and explicit internal equatorial water waves with underlying currents, J. Math. Fluid Mech., 19 (2017), 305-314.
doi: 10.1007/s00021-016-0281-6. |
[28] |
T. Lyons,
Particle trajectories in extreme Stokes waves over infinite depth, Disc. Contin. Dyn. Sys. Ser. A, 34 (2014), 3095-3107.
doi: 10.3934/dcds.2014.34.3095. |
[29] |
T. Lyons,
The pressure distribution in extreme Stokes waves, Nonlin. Anal. Real World Appl., 31 (2016), 77-87.
doi: 10.1016/j.nonrwa.2016.01.008. |
[30] |
T. Lyons, The pressure in a deep-water Stokes wave of greatest height, J. Math. Fluid Mech., 18 (2016), 209–218.
doi: 10.1007/s00021-016-0249-6. |
[31] |
T. Lyons, The dynamic pressure in deep-water extreme Stokes waves, Phil. Trans. R. Soc. A, 376 (2018), 20170095, 13pp.
doi: 10.1098/rsta.2017.0095. |
[32] |
C. I. Martin,
Dynamics of the thermocline in the equatorial region of the pacific ocean, J. Nonlin. Math. Phys., 22 (2015), 516-522.
doi: 10.1080/14029251.2015.1113049. |
[33] |
A. V. Matioc,
Exact geophysical waves in stratified fluids, Appl, Anal., 92 (2013), 2254-2261.
doi: 10.1080/00036811.2012.727987. |
[34] |
W. J. M. Rankine,
On the exact form of waves near the surface of deep water, Philos. Trans. R. Soc. London A, 153 (1863), 127-138.
|
[35] |
A. Rodriguez-Sanjurjo,
Global diffeomorphism of the Lagrangian flow-map for Equatorially-trapped internal water waves, Nonlin. Anal.: Theor., Meth. Appl., 149 (2017), 156-164.
doi: 10.1016/j.na.2016.10.022. |
[36] |
A. Rodriguez-Sanjurjo and M. Kluczek,
Mean flow properties for equatorially trapped internal water wave–current interactions, Appl. Anal., 96 (2017), 2333-2345.
doi: 10.1080/00036811.2016.1221943. |
[37] |
K. W. S and M. M. J,
Oceaninc equatorial waves and the 1991–1993 El Niño, J. Climate, 8 (1995), 1757-1774.
|
[38] |
S. Sastre-Gomez,
Global diffeomorphism of the Lagrangian flow-map defining equatorially trapped water waves, Nonlin. Anal., 125 (2015), 725-731.
doi: 10.1016/j.na.2015.06.017. |
[39] |
G. G. Stokes,
Considerations relative to the greatest height of oscillatory irrotational waves which can be propagated without change of form, Mathematical and Physical Papers, 1 (1880), 225-228.
|
[40] |
J. F. Toland,
Stokes waves, Topol. Meth. Nonlin. Anal., 7 (1996), 1-48.
doi: 10.12775/TMNA.1996.001. |
[41] |
G. K. Vallis, D. J. Parker and S. M. Tobias,
A simple system for moist convection: The rainy-Benard model, J. Fluid Mech., 862 (2019), 162-199.
doi: 10.1017/jfm.2018.954. |
[42] |
S. H. C. Wacogne, Dynamics of the Equatorial Undercurrent and Its Termination, PhD thesis, Massachusetts Institute of Technology, 1988. |






[1] |
Mateusz Kluczek. Nonhydrostatic Pollard-like internal geophysical waves. Discrete and Continuous Dynamical Systems, 2019, 39 (9) : 5171-5183. doi: 10.3934/dcds.2019210 |
[2] |
Jifeng Chu, Delia Ionescu-Kruse, Yanjuan Yang. Exact solution and instability for geophysical waves at arbitrary latitude. Discrete and Continuous Dynamical Systems, 2019, 39 (8) : 4399-4414. doi: 10.3934/dcds.2019178 |
[3] |
Fahe Miao, Michal Fečkan, Jinrong Wang. Exact solution and instability for geophysical edge waves. Communications on Pure and Applied Analysis, 2022, 21 (7) : 2447-2461. doi: 10.3934/cpaa.2022067 |
[4] |
Anatoly Abrashkin. Wind generated equatorial Gerstner-type waves. Discrete and Continuous Dynamical Systems, 2019, 39 (8) : 4443-4453. doi: 10.3934/dcds.2019181 |
[5] |
Isabelle Gallagher. A mathematical review of the analysis of the betaplane model and equatorial waves. Discrete and Continuous Dynamical Systems - S, 2008, 1 (3) : 461-480. doi: 10.3934/dcdss.2008.1.461 |
[6] |
Jifeng Chu, Joachim Escher. Steady periodic equatorial water waves with vorticity. Discrete and Continuous Dynamical Systems, 2019, 39 (8) : 4713-4729. doi: 10.3934/dcds.2019191 |
[7] |
David Henry, Hung-Chu Hsu. Instability of equatorial water waves in the $f-$plane. Discrete and Continuous Dynamical Systems, 2015, 35 (3) : 909-916. doi: 10.3934/dcds.2015.35.909 |
[8] |
David Henry. Energy considerations for nonlinear equatorial water waves. Communications on Pure and Applied Analysis, 2022, 21 (7) : 2337-2356. doi: 10.3934/cpaa.2022057 |
[9] |
Raphael Stuhlmeier. Internal Gerstner waves on a sloping bed. Discrete and Continuous Dynamical Systems, 2014, 34 (8) : 3183-3192. doi: 10.3934/dcds.2014.34.3183 |
[10] |
José Raúl Quintero, Juan Carlos Muñoz Grajales. Solitary waves for an internal wave model. Discrete and Continuous Dynamical Systems, 2016, 36 (10) : 5721-5741. doi: 10.3934/dcds.2016051 |
[11] |
Jerry L. Bona, Henrik Kalisch. Models for internal waves in deep water. Discrete and Continuous Dynamical Systems, 2000, 6 (1) : 1-20. doi: 10.3934/dcds.2000.6.1 |
[12] |
Tony Lyons. Particle trajectories in extreme Stokes waves over infinite depth. Discrete and Continuous Dynamical Systems, 2014, 34 (8) : 3095-3107. doi: 10.3934/dcds.2014.34.3095 |
[13] |
Vincent Duchêne, Samer Israwi, Raafat Talhouk. Shallow water asymptotic models for the propagation of internal waves. Discrete and Continuous Dynamical Systems - S, 2014, 7 (2) : 239-269. doi: 10.3934/dcdss.2014.7.239 |
[14] |
Hung-Chu Hsu. Exact azimuthal internal waves with an underlying current. Discrete and Continuous Dynamical Systems, 2017, 37 (8) : 4391-4398. doi: 10.3934/dcds.2017188 |
[15] |
Joseph D. Cullen, Rossen I. Ivanov. Hamiltonian description of internal ocean waves with Coriolis force. Communications on Pure and Applied Analysis, 2022, 21 (7) : 2291-2307. doi: 10.3934/cpaa.2022029 |
[16] |
Tony Lyons. Particle paths in equatorial flows. Communications on Pure and Applied Analysis, 2022, 21 (7) : 2399-2414. doi: 10.3934/cpaa.2022041 |
[17] |
Ralph Lteif, Samer Israwi, Raafat Talhouk. An improved result for the full justification of asymptotic models for the propagation of internal waves. Communications on Pure and Applied Analysis, 2015, 14 (6) : 2203-2230. doi: 10.3934/cpaa.2015.14.2203 |
[18] |
Delia Ionescu-Kruse, Anca-Voichita Matioc. Small-amplitude equatorial water waves with constant vorticity: Dispersion relations and particle trajectories. Discrete and Continuous Dynamical Systems, 2014, 34 (8) : 3045-3060. doi: 10.3934/dcds.2014.34.3045 |
[19] |
Anna Geyer, Ronald Quirchmayr. Weakly nonlinear waves in stratified shear flows. Communications on Pure and Applied Analysis, 2022, 21 (7) : 2309-2325. doi: 10.3934/cpaa.2022061 |
[20] |
Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete and Continuous Dynamical Systems, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]