
-
Previous Article
A quasi-linear nonlocal Venttsel' problem of Ambrosetti–Prodi type on fractal domains
- DCDS Home
- This Issue
-
Next Article
Weak periodic solutions and numerical case studies of the Fornberg-Whitham equation
Geophysical internal equatorial waves of extreme form
Department of Computing & Mathematics, Waterford Institute of Technology, Waterford, Ireland |
The existence of internal geophysical waves of extreme form is confirmed and an explicit solution presented. The flow is confined to a layer lying above an eastward current while the mean horizontal flow of the solutions is westward, thus incorporating flow reversal in the fluid.
References:
[1] |
C. J. Amick, L. E. Fraenkel and J. F. Toland,
On the Stokes conjecture for the wave of extreme form, Acta Math., 148 (1982), 193-214.
doi: 10.1007/BF02392728. |
[2] |
A. Bennett, Lagrangian Fluid Dynamics, Cambridge Monographs on Mechanics, Cambridge University Press, 2006.
doi: 10.1017/CBO9780511734939.![]() ![]() |
[3] |
B. Buffoni and J. Toland, Analytic Theory of Global Bifurcation, Princeton University Press, 2003.
doi: 10.1515/9781400884339.![]() ![]() |
[4] |
A. Compelli and R. Ivanov,
On the dynamics of internal waves interacting with the equatorial undercurrent, J. Nonlin. Math. Phys., 22 (2015), 531-539.
doi: 10.1080/14029251.2015.1113052. |
[5] |
A. Constantin,
On the deep water wave motion, J. Phys. A, 34 (2001), 1405-1417.
doi: 10.1088/0305-4470/34/7/313. |
[6] |
A. Constantin, Nonlinear Water Waves with Applications to Wave-Current Interactions and Tsunamis, vol. 81 of CBMS-NSF Regional Conference Series in Applied Mathematics, SIAM, Philadelphia, 2011.
doi: 10.1137/1.9781611971873. |
[7] |
A. Constantin, An exact solution for equatorially trapped waves, J. Geophys. Res. Oceans, 117 (2012).
doi: 10.1029/2012JC007879. |
[8] |
A. Constantin, On the modelling of equatorial waves, Geophys. Res. Lett., 39 (2012).
doi: 10.1029/2012GL051169. |
[9] |
A. Constantin,
Particle trajectories in extreme Stokes waves, IMA J. Appl. Math., 77 (2012), 293-307.
doi: 10.1093/imamat/hxs033. |
[10] |
A. Constantin,
Some three-dimensional nonlinear equatorial flows, J. Phys. Oceanog., 43 (2013), 165-175.
doi: 10.1175/JPO-D-12-062.1. |
[11] |
A. Constantin,
Some nonlinear, equatorially trapped, nonhydrostatic internal geophysical waves, J. Phys. Oceanogr., 44 (2014), 781-789.
doi: 10.1175/JPO-D-13-0174.1. |
[12] |
A. Constantin and P. Germain,
Instability of some equatorially trapped waves, J. Geophys. Res. Oceans, 118 (2013), 2802-2810.
doi: 10.1002/jgrc.20219. |
[13] |
A. Constantin and R. S. Johnson, A nonlinear, three-dimensional model for ocean flows, motivated by some observations of the Pacific Equatorial Undercurrent and thermocline, Phys. Fluids, 29 (2017), 056604. Google Scholar |
[14] |
A. Constantin and S. G. Monismith,
Gerstner waves in the presence of mean currents and rotation, J. Fluid Mech., 820 (2017), 511-528.
doi: 10.1017/jfm.2017.223. |
[15] |
R. Courant, Differential and Integral Calculus, John Wiley & Sons, Inc., New York, 1988. |
[16] |
B. Cushman-Roisin and J. M. Beckers, Introduction to Geophysical Fluid Dynamics: Physical and Numerical Aspects, vol. 101, Academic Press, 2011. |
[17] |
M. L. Dubreil-Jacotin, Sur les ondes de type permanent dans les liquides, Atti. Accad. Naz. Lincei, Mem. Cl. Sci. Fis. Mat. Nat., 15 (1932), 814-819. Google Scholar |
[18] |
F. Genoud and D. Henry,
Instability of equatorial water waves with an underlying current, J. Math. Fluid Mech., 16 (2014), 661-667.
doi: 10.1007/s00021-014-0175-4. |
[19] |
F. Gerstner, Theorie der wellen samt einer daraus abgeleiteten theorie der deichprofile, Ann. Phys., 2 (1809), 412-445. Google Scholar |
[20] |
H. Goldstein, C. P. Poole and J. L. Safko, Classical Mechanics, Pearson International Edition, Addison Wesley, 2002. Google Scholar |
[21] |
D. Henry,
On Gerstner's water wave, J. Nonlin. Math. Phys., 15 (2008), 87-95.
doi: 10.2991/jnmp.2008.15.S2.7. |
[22] |
D. Henry,
An exact solution for equatorial geophysical water waves with an underlying current, Eur. J. Mech. B Fluids, 38 (2013), 18-21.
doi: 10.1016/j.euromechflu.2012.10.001. |
[23] |
D. Henry, On three-dimensional Gerstner-like equatorial water waves, Phil. Trans. R. Soc. A, 376 (2018), 20170088, 16pp.
doi: 10.1098/rsta.2017.0088. |
[24] |
D. Henry and H. C. Hsu,
Instability of internal equatorial water waves, J. Diff. Eqn., 258 (2015), 1015-1024.
doi: 10.1016/j.jde.2014.08.019. |
[25] |
D. Henry and S. Sastre-Gomez,
Mean flow velocities and mass transport for equatorially-trapped water waves with an underlying current, J. Math. Fluid Mech., 18 (2016), 795-804.
doi: 10.1007/s00021-016-0262-9. |
[26] |
D. Ionescu-Kruse, On the short-wavelength stabilities of some geophysical flows, Phil. Trans. R. Soc. A, 376 (2018), 20170090, 21pp.
doi: 10.1098/rsta.2017.0090. |
[27] |
M. Kluczek,
Exact and explicit internal equatorial water waves with underlying currents, J. Math. Fluid Mech., 19 (2017), 305-314.
doi: 10.1007/s00021-016-0281-6. |
[28] |
T. Lyons,
Particle trajectories in extreme Stokes waves over infinite depth, Disc. Contin. Dyn. Sys. Ser. A, 34 (2014), 3095-3107.
doi: 10.3934/dcds.2014.34.3095. |
[29] |
T. Lyons,
The pressure distribution in extreme Stokes waves, Nonlin. Anal. Real World Appl., 31 (2016), 77-87.
doi: 10.1016/j.nonrwa.2016.01.008. |
[30] |
T. Lyons, The pressure in a deep-water Stokes wave of greatest height, J. Math. Fluid Mech., 18 (2016), 209–218.
doi: 10.1007/s00021-016-0249-6. |
[31] |
T. Lyons, The dynamic pressure in deep-water extreme Stokes waves, Phil. Trans. R. Soc. A, 376 (2018), 20170095, 13pp.
doi: 10.1098/rsta.2017.0095. |
[32] |
C. I. Martin,
Dynamics of the thermocline in the equatorial region of the pacific ocean, J. Nonlin. Math. Phys., 22 (2015), 516-522.
doi: 10.1080/14029251.2015.1113049. |
[33] |
A. V. Matioc,
Exact geophysical waves in stratified fluids, Appl, Anal., 92 (2013), 2254-2261.
doi: 10.1080/00036811.2012.727987. |
[34] |
W. J. M. Rankine, On the exact form of waves near the surface of deep water, Philos. Trans. R. Soc. London A, 153 (1863), 127-138. Google Scholar |
[35] |
A. Rodriguez-Sanjurjo,
Global diffeomorphism of the Lagrangian flow-map for Equatorially-trapped internal water waves, Nonlin. Anal.: Theor., Meth. Appl., 149 (2017), 156-164.
doi: 10.1016/j.na.2016.10.022. |
[36] |
A. Rodriguez-Sanjurjo and M. Kluczek,
Mean flow properties for equatorially trapped internal water wave–current interactions, Appl. Anal., 96 (2017), 2333-2345.
doi: 10.1080/00036811.2016.1221943. |
[37] |
K. W. S and M. M. J, Oceaninc equatorial waves and the 1991–1993 El Niño, J. Climate, 8 (1995), 1757-1774. Google Scholar |
[38] |
S. Sastre-Gomez,
Global diffeomorphism of the Lagrangian flow-map defining equatorially trapped water waves, Nonlin. Anal., 125 (2015), 725-731.
doi: 10.1016/j.na.2015.06.017. |
[39] |
G. G. Stokes, Considerations relative to the greatest height of oscillatory irrotational waves which can be propagated without change of form, Mathematical and Physical Papers, 1 (1880), 225-228. Google Scholar |
[40] |
J. F. Toland,
Stokes waves, Topol. Meth. Nonlin. Anal., 7 (1996), 1-48.
doi: 10.12775/TMNA.1996.001. |
[41] |
G. K. Vallis, D. J. Parker and S. M. Tobias,
A simple system for moist convection: The rainy-Benard model, J. Fluid Mech., 862 (2019), 162-199.
doi: 10.1017/jfm.2018.954. |
[42] |
S. H. C. Wacogne, Dynamics of the Equatorial Undercurrent and Its Termination, PhD thesis, Massachusetts Institute of Technology, 1988. Google Scholar |
show all references
References:
[1] |
C. J. Amick, L. E. Fraenkel and J. F. Toland,
On the Stokes conjecture for the wave of extreme form, Acta Math., 148 (1982), 193-214.
doi: 10.1007/BF02392728. |
[2] |
A. Bennett, Lagrangian Fluid Dynamics, Cambridge Monographs on Mechanics, Cambridge University Press, 2006.
doi: 10.1017/CBO9780511734939.![]() ![]() |
[3] |
B. Buffoni and J. Toland, Analytic Theory of Global Bifurcation, Princeton University Press, 2003.
doi: 10.1515/9781400884339.![]() ![]() |
[4] |
A. Compelli and R. Ivanov,
On the dynamics of internal waves interacting with the equatorial undercurrent, J. Nonlin. Math. Phys., 22 (2015), 531-539.
doi: 10.1080/14029251.2015.1113052. |
[5] |
A. Constantin,
On the deep water wave motion, J. Phys. A, 34 (2001), 1405-1417.
doi: 10.1088/0305-4470/34/7/313. |
[6] |
A. Constantin, Nonlinear Water Waves with Applications to Wave-Current Interactions and Tsunamis, vol. 81 of CBMS-NSF Regional Conference Series in Applied Mathematics, SIAM, Philadelphia, 2011.
doi: 10.1137/1.9781611971873. |
[7] |
A. Constantin, An exact solution for equatorially trapped waves, J. Geophys. Res. Oceans, 117 (2012).
doi: 10.1029/2012JC007879. |
[8] |
A. Constantin, On the modelling of equatorial waves, Geophys. Res. Lett., 39 (2012).
doi: 10.1029/2012GL051169. |
[9] |
A. Constantin,
Particle trajectories in extreme Stokes waves, IMA J. Appl. Math., 77 (2012), 293-307.
doi: 10.1093/imamat/hxs033. |
[10] |
A. Constantin,
Some three-dimensional nonlinear equatorial flows, J. Phys. Oceanog., 43 (2013), 165-175.
doi: 10.1175/JPO-D-12-062.1. |
[11] |
A. Constantin,
Some nonlinear, equatorially trapped, nonhydrostatic internal geophysical waves, J. Phys. Oceanogr., 44 (2014), 781-789.
doi: 10.1175/JPO-D-13-0174.1. |
[12] |
A. Constantin and P. Germain,
Instability of some equatorially trapped waves, J. Geophys. Res. Oceans, 118 (2013), 2802-2810.
doi: 10.1002/jgrc.20219. |
[13] |
A. Constantin and R. S. Johnson, A nonlinear, three-dimensional model for ocean flows, motivated by some observations of the Pacific Equatorial Undercurrent and thermocline, Phys. Fluids, 29 (2017), 056604. Google Scholar |
[14] |
A. Constantin and S. G. Monismith,
Gerstner waves in the presence of mean currents and rotation, J. Fluid Mech., 820 (2017), 511-528.
doi: 10.1017/jfm.2017.223. |
[15] |
R. Courant, Differential and Integral Calculus, John Wiley & Sons, Inc., New York, 1988. |
[16] |
B. Cushman-Roisin and J. M. Beckers, Introduction to Geophysical Fluid Dynamics: Physical and Numerical Aspects, vol. 101, Academic Press, 2011. |
[17] |
M. L. Dubreil-Jacotin, Sur les ondes de type permanent dans les liquides, Atti. Accad. Naz. Lincei, Mem. Cl. Sci. Fis. Mat. Nat., 15 (1932), 814-819. Google Scholar |
[18] |
F. Genoud and D. Henry,
Instability of equatorial water waves with an underlying current, J. Math. Fluid Mech., 16 (2014), 661-667.
doi: 10.1007/s00021-014-0175-4. |
[19] |
F. Gerstner, Theorie der wellen samt einer daraus abgeleiteten theorie der deichprofile, Ann. Phys., 2 (1809), 412-445. Google Scholar |
[20] |
H. Goldstein, C. P. Poole and J. L. Safko, Classical Mechanics, Pearson International Edition, Addison Wesley, 2002. Google Scholar |
[21] |
D. Henry,
On Gerstner's water wave, J. Nonlin. Math. Phys., 15 (2008), 87-95.
doi: 10.2991/jnmp.2008.15.S2.7. |
[22] |
D. Henry,
An exact solution for equatorial geophysical water waves with an underlying current, Eur. J. Mech. B Fluids, 38 (2013), 18-21.
doi: 10.1016/j.euromechflu.2012.10.001. |
[23] |
D. Henry, On three-dimensional Gerstner-like equatorial water waves, Phil. Trans. R. Soc. A, 376 (2018), 20170088, 16pp.
doi: 10.1098/rsta.2017.0088. |
[24] |
D. Henry and H. C. Hsu,
Instability of internal equatorial water waves, J. Diff. Eqn., 258 (2015), 1015-1024.
doi: 10.1016/j.jde.2014.08.019. |
[25] |
D. Henry and S. Sastre-Gomez,
Mean flow velocities and mass transport for equatorially-trapped water waves with an underlying current, J. Math. Fluid Mech., 18 (2016), 795-804.
doi: 10.1007/s00021-016-0262-9. |
[26] |
D. Ionescu-Kruse, On the short-wavelength stabilities of some geophysical flows, Phil. Trans. R. Soc. A, 376 (2018), 20170090, 21pp.
doi: 10.1098/rsta.2017.0090. |
[27] |
M. Kluczek,
Exact and explicit internal equatorial water waves with underlying currents, J. Math. Fluid Mech., 19 (2017), 305-314.
doi: 10.1007/s00021-016-0281-6. |
[28] |
T. Lyons,
Particle trajectories in extreme Stokes waves over infinite depth, Disc. Contin. Dyn. Sys. Ser. A, 34 (2014), 3095-3107.
doi: 10.3934/dcds.2014.34.3095. |
[29] |
T. Lyons,
The pressure distribution in extreme Stokes waves, Nonlin. Anal. Real World Appl., 31 (2016), 77-87.
doi: 10.1016/j.nonrwa.2016.01.008. |
[30] |
T. Lyons, The pressure in a deep-water Stokes wave of greatest height, J. Math. Fluid Mech., 18 (2016), 209–218.
doi: 10.1007/s00021-016-0249-6. |
[31] |
T. Lyons, The dynamic pressure in deep-water extreme Stokes waves, Phil. Trans. R. Soc. A, 376 (2018), 20170095, 13pp.
doi: 10.1098/rsta.2017.0095. |
[32] |
C. I. Martin,
Dynamics of the thermocline in the equatorial region of the pacific ocean, J. Nonlin. Math. Phys., 22 (2015), 516-522.
doi: 10.1080/14029251.2015.1113049. |
[33] |
A. V. Matioc,
Exact geophysical waves in stratified fluids, Appl, Anal., 92 (2013), 2254-2261.
doi: 10.1080/00036811.2012.727987. |
[34] |
W. J. M. Rankine, On the exact form of waves near the surface of deep water, Philos. Trans. R. Soc. London A, 153 (1863), 127-138. Google Scholar |
[35] |
A. Rodriguez-Sanjurjo,
Global diffeomorphism of the Lagrangian flow-map for Equatorially-trapped internal water waves, Nonlin. Anal.: Theor., Meth. Appl., 149 (2017), 156-164.
doi: 10.1016/j.na.2016.10.022. |
[36] |
A. Rodriguez-Sanjurjo and M. Kluczek,
Mean flow properties for equatorially trapped internal water wave–current interactions, Appl. Anal., 96 (2017), 2333-2345.
doi: 10.1080/00036811.2016.1221943. |
[37] |
K. W. S and M. M. J, Oceaninc equatorial waves and the 1991–1993 El Niño, J. Climate, 8 (1995), 1757-1774. Google Scholar |
[38] |
S. Sastre-Gomez,
Global diffeomorphism of the Lagrangian flow-map defining equatorially trapped water waves, Nonlin. Anal., 125 (2015), 725-731.
doi: 10.1016/j.na.2015.06.017. |
[39] |
G. G. Stokes, Considerations relative to the greatest height of oscillatory irrotational waves which can be propagated without change of form, Mathematical and Physical Papers, 1 (1880), 225-228. Google Scholar |
[40] |
J. F. Toland,
Stokes waves, Topol. Meth. Nonlin. Anal., 7 (1996), 1-48.
doi: 10.12775/TMNA.1996.001. |
[41] |
G. K. Vallis, D. J. Parker and S. M. Tobias,
A simple system for moist convection: The rainy-Benard model, J. Fluid Mech., 862 (2019), 162-199.
doi: 10.1017/jfm.2018.954. |
[42] |
S. H. C. Wacogne, Dynamics of the Equatorial Undercurrent and Its Termination, PhD thesis, Massachusetts Institute of Technology, 1988. Google Scholar |






[1] |
Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215 |
[2] |
Wei-Chieh Chen, Bogdan Kazmierczak. Traveling waves in quadratic autocatalytic systems with complexing agent. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020364 |
[3] |
Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020323 |
[4] |
Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256 |
[5] |
Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075 |
[6] |
Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, , () : -. doi: 10.3934/era.2021003 |
[7] |
Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020466 |
[8] |
Jonathan J. Wylie, Robert M. Miura, Huaxiong Huang. Systems of coupled diffusion equations with degenerate nonlinear source terms: Linear stability and traveling waves. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 561-569. doi: 10.3934/dcds.2009.23.561 |
[9] |
Jason Murphy, Kenji Nakanishi. Failure of scattering to solitary waves for long-range nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1507-1517. doi: 10.3934/dcds.2020328 |
[10] |
Yohei Yamazaki. Center stable manifolds around line solitary waves of the Zakharov–Kuznetsov equation with critical speed. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021008 |
[11] |
Mohamed Dellal, Bachir Bar. Global analysis of a model of competition in the chemostat with internal inhibitor. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1129-1148. doi: 10.3934/dcdsb.2020156 |
[12] |
Wenjun Liu, Hefeng Zhuang. Global attractor for a suspension bridge problem with a nonlinear delay term in the internal feedback. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 907-942. doi: 10.3934/dcdsb.2020147 |
[13] |
Xiaorui Wang, Genqi Xu, Hao Chen. Uniform stabilization of 1-D Schrödinger equation with internal difference-type control. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021022 |
[14] |
Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, 2021, 20 (1) : 319-338. doi: 10.3934/cpaa.2020268 |
[15] |
Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020467 |
[16] |
Martin Heida, Stefan Neukamm, Mario Varga. Stochastic homogenization of $ \Lambda $-convex gradient flows. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 427-453. doi: 10.3934/dcdss.2020328 |
[17] |
Giulia Luise, Giuseppe Savaré. Contraction and regularizing properties of heat flows in metric measure spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 273-297. doi: 10.3934/dcdss.2020327 |
[18] |
Luis Caffarelli, Fanghua Lin. Nonlocal heat flows preserving the L2 energy. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 49-64. doi: 10.3934/dcds.2009.23.49 |
[19] |
Olivier Pironneau, Alexei Lozinski, Alain Perronnet, Frédéric Hecht. Numerical zoom for multiscale problems with an application to flows through porous media. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 265-280. doi: 10.3934/dcds.2009.23.265 |
[20] |
Chun Liu, Huan Sun. On energetic variational approaches in modeling the nematic liquid crystal flows. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 455-475. doi: 10.3934/dcds.2009.23.455 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]