August  2019, 39(8): 4471-4486. doi: 10.3934/dcds.2019183

Geophysical internal equatorial waves of extreme form

Department of Computing & Mathematics, Waterford Institute of Technology, Waterford, Ireland

The paper is for the special theme: Mathematical Aspects of Physical Oceanography, organized by Adrian Constantin

Received  August 2018 Revised  October 2018 Published  May 2019

The existence of internal geophysical waves of extreme form is confirmed and an explicit solution presented. The flow is confined to a layer lying above an eastward current while the mean horizontal flow of the solutions is westward, thus incorporating flow reversal in the fluid.

Citation: Tony Lyons. Geophysical internal equatorial waves of extreme form. Discrete & Continuous Dynamical Systems - A, 2019, 39 (8) : 4471-4486. doi: 10.3934/dcds.2019183
References:
[1]

C. J. AmickL. E. Fraenkel and J. F. Toland, On the Stokes conjecture for the wave of extreme form, Acta Math., 148 (1982), 193-214. doi: 10.1007/BF02392728.

[2] A. Bennett, Lagrangian Fluid Dynamics, Cambridge Monographs on Mechanics, Cambridge University Press, 2006. doi: 10.1017/CBO9780511734939.
[3] B. Buffoni and J. Toland, Analytic Theory of Global Bifurcation, Princeton University Press, 2003. doi: 10.1515/9781400884339.
[4]

A. Compelli and R. Ivanov, On the dynamics of internal waves interacting with the equatorial undercurrent, J. Nonlin. Math. Phys., 22 (2015), 531-539. doi: 10.1080/14029251.2015.1113052.

[5]

A. Constantin, On the deep water wave motion, J. Phys. A, 34 (2001), 1405-1417. doi: 10.1088/0305-4470/34/7/313.

[6]

A. Constantin, Nonlinear Water Waves with Applications to Wave-Current Interactions and Tsunamis, vol. 81 of CBMS-NSF Regional Conference Series in Applied Mathematics, SIAM, Philadelphia, 2011. doi: 10.1137/1.9781611971873.

[7]

A. Constantin, An exact solution for equatorially trapped waves, J. Geophys. Res. Oceans, 117 (2012). doi: 10.1029/2012JC007879.

[8]

A. Constantin, On the modelling of equatorial waves, Geophys. Res. Lett., 39 (2012). doi: 10.1029/2012GL051169.

[9]

A. Constantin, Particle trajectories in extreme Stokes waves, IMA J. Appl. Math., 77 (2012), 293-307. doi: 10.1093/imamat/hxs033.

[10]

A. Constantin, Some three-dimensional nonlinear equatorial flows, J. Phys. Oceanog., 43 (2013), 165-175. doi: 10.1175/JPO-D-12-062.1.

[11]

A. Constantin, Some nonlinear, equatorially trapped, nonhydrostatic internal geophysical waves, J. Phys. Oceanogr., 44 (2014), 781-789. doi: 10.1175/JPO-D-13-0174.1.

[12]

A. Constantin and P. Germain, Instability of some equatorially trapped waves, J. Geophys. Res. Oceans, 118 (2013), 2802-2810. doi: 10.1002/jgrc.20219.

[13]

A. Constantin and R. S. Johnson, A nonlinear, three-dimensional model for ocean flows, motivated by some observations of the Pacific Equatorial Undercurrent and thermocline, Phys. Fluids, 29 (2017), 056604.

[14]

A. Constantin and S. G. Monismith, Gerstner waves in the presence of mean currents and rotation, J. Fluid Mech., 820 (2017), 511-528. doi: 10.1017/jfm.2017.223.

[15]

R. Courant, Differential and Integral Calculus, John Wiley & Sons, Inc., New York, 1988.

[16]

B. Cushman-Roisin and J. M. Beckers, Introduction to Geophysical Fluid Dynamics: Physical and Numerical Aspects, vol. 101, Academic Press, 2011.

[17]

M. L. Dubreil-Jacotin, Sur les ondes de type permanent dans les liquides, Atti. Accad. Naz. Lincei, Mem. Cl. Sci. Fis. Mat. Nat., 15 (1932), 814-819.

[18]

F. Genoud and D. Henry, Instability of equatorial water waves with an underlying current, J. Math. Fluid Mech., 16 (2014), 661-667. doi: 10.1007/s00021-014-0175-4.

[19]

F. Gerstner, Theorie der wellen samt einer daraus abgeleiteten theorie der deichprofile, Ann. Phys., 2 (1809), 412-445.

[20]

H. Goldstein, C. P. Poole and J. L. Safko, Classical Mechanics, Pearson International Edition, Addison Wesley, 2002.

[21]

D. Henry, On Gerstner's water wave, J. Nonlin. Math. Phys., 15 (2008), 87-95. doi: 10.2991/jnmp.2008.15.S2.7.

[22]

D. Henry, An exact solution for equatorial geophysical water waves with an underlying current, Eur. J. Mech. B Fluids, 38 (2013), 18-21. doi: 10.1016/j.euromechflu.2012.10.001.

[23]

D. Henry, On three-dimensional Gerstner-like equatorial water waves, Phil. Trans. R. Soc. A, 376 (2018), 20170088, 16pp. doi: 10.1098/rsta.2017.0088.

[24]

D. Henry and H. C. Hsu, Instability of internal equatorial water waves, J. Diff. Eqn., 258 (2015), 1015-1024. doi: 10.1016/j.jde.2014.08.019.

[25]

D. Henry and S. Sastre-Gomez, Mean flow velocities and mass transport for equatorially-trapped water waves with an underlying current, J. Math. Fluid Mech., 18 (2016), 795-804. doi: 10.1007/s00021-016-0262-9.

[26]

D. Ionescu-Kruse, On the short-wavelength stabilities of some geophysical flows, Phil. Trans. R. Soc. A, 376 (2018), 20170090, 21pp. doi: 10.1098/rsta.2017.0090.

[27]

M. Kluczek, Exact and explicit internal equatorial water waves with underlying currents, J. Math. Fluid Mech., 19 (2017), 305-314. doi: 10.1007/s00021-016-0281-6.

[28]

T. Lyons, Particle trajectories in extreme Stokes waves over infinite depth, Disc. Contin. Dyn. Sys. Ser. A, 34 (2014), 3095-3107. doi: 10.3934/dcds.2014.34.3095.

[29]

T. Lyons, The pressure distribution in extreme Stokes waves, Nonlin. Anal. Real World Appl., 31 (2016), 77-87. doi: 10.1016/j.nonrwa.2016.01.008.

[30]

T. Lyons, The pressure in a deep-water Stokes wave of greatest height, J. Math. Fluid Mech., 18 (2016), 209–218. doi: 10.1007/s00021-016-0249-6.

[31]

T. Lyons, The dynamic pressure in deep-water extreme Stokes waves, Phil. Trans. R. Soc. A, 376 (2018), 20170095, 13pp. doi: 10.1098/rsta.2017.0095.

[32]

C. I. Martin, Dynamics of the thermocline in the equatorial region of the pacific ocean, J. Nonlin. Math. Phys., 22 (2015), 516-522. doi: 10.1080/14029251.2015.1113049.

[33]

A. V. Matioc, Exact geophysical waves in stratified fluids, Appl, Anal., 92 (2013), 2254-2261. doi: 10.1080/00036811.2012.727987.

[34]

W. J. M. Rankine, On the exact form of waves near the surface of deep water, Philos. Trans. R. Soc. London A, 153 (1863), 127-138.

[35]

A. Rodriguez-Sanjurjo, Global diffeomorphism of the Lagrangian flow-map for Equatorially-trapped internal water waves, Nonlin. Anal.: Theor., Meth. Appl., 149 (2017), 156-164. doi: 10.1016/j.na.2016.10.022.

[36]

A. Rodriguez-Sanjurjo and M. Kluczek, Mean flow properties for equatorially trapped internal water wave–current interactions, Appl. Anal., 96 (2017), 2333-2345. doi: 10.1080/00036811.2016.1221943.

[37]

K. W. S and M. M. J, Oceaninc equatorial waves and the 1991–1993 El Niño, J. Climate, 8 (1995), 1757-1774.

[38]

S. Sastre-Gomez, Global diffeomorphism of the Lagrangian flow-map defining equatorially trapped water waves, Nonlin. Anal., 125 (2015), 725-731. doi: 10.1016/j.na.2015.06.017.

[39]

G. G. Stokes, Considerations relative to the greatest height of oscillatory irrotational waves which can be propagated without change of form, Mathematical and Physical Papers, 1 (1880), 225-228.

[40]

J. F. Toland, Stokes waves, Topol. Meth. Nonlin. Anal., 7 (1996), 1-48. doi: 10.12775/TMNA.1996.001.

[41]

G. K. VallisD. J. Parker and S. M. Tobias, A simple system for moist convection: The rainy-Benard model, J. Fluid Mech., 862 (2019), 162-199. doi: 10.1017/jfm.2018.954.

[42]

S. H. C. Wacogne, Dynamics of the Equatorial Undercurrent and Its Termination, PhD thesis, Massachusetts Institute of Technology, 1988.

show all references

References:
[1]

C. J. AmickL. E. Fraenkel and J. F. Toland, On the Stokes conjecture for the wave of extreme form, Acta Math., 148 (1982), 193-214. doi: 10.1007/BF02392728.

[2] A. Bennett, Lagrangian Fluid Dynamics, Cambridge Monographs on Mechanics, Cambridge University Press, 2006. doi: 10.1017/CBO9780511734939.
[3] B. Buffoni and J. Toland, Analytic Theory of Global Bifurcation, Princeton University Press, 2003. doi: 10.1515/9781400884339.
[4]

A. Compelli and R. Ivanov, On the dynamics of internal waves interacting with the equatorial undercurrent, J. Nonlin. Math. Phys., 22 (2015), 531-539. doi: 10.1080/14029251.2015.1113052.

[5]

A. Constantin, On the deep water wave motion, J. Phys. A, 34 (2001), 1405-1417. doi: 10.1088/0305-4470/34/7/313.

[6]

A. Constantin, Nonlinear Water Waves with Applications to Wave-Current Interactions and Tsunamis, vol. 81 of CBMS-NSF Regional Conference Series in Applied Mathematics, SIAM, Philadelphia, 2011. doi: 10.1137/1.9781611971873.

[7]

A. Constantin, An exact solution for equatorially trapped waves, J. Geophys. Res. Oceans, 117 (2012). doi: 10.1029/2012JC007879.

[8]

A. Constantin, On the modelling of equatorial waves, Geophys. Res. Lett., 39 (2012). doi: 10.1029/2012GL051169.

[9]

A. Constantin, Particle trajectories in extreme Stokes waves, IMA J. Appl. Math., 77 (2012), 293-307. doi: 10.1093/imamat/hxs033.

[10]

A. Constantin, Some three-dimensional nonlinear equatorial flows, J. Phys. Oceanog., 43 (2013), 165-175. doi: 10.1175/JPO-D-12-062.1.

[11]

A. Constantin, Some nonlinear, equatorially trapped, nonhydrostatic internal geophysical waves, J. Phys. Oceanogr., 44 (2014), 781-789. doi: 10.1175/JPO-D-13-0174.1.

[12]

A. Constantin and P. Germain, Instability of some equatorially trapped waves, J. Geophys. Res. Oceans, 118 (2013), 2802-2810. doi: 10.1002/jgrc.20219.

[13]

A. Constantin and R. S. Johnson, A nonlinear, three-dimensional model for ocean flows, motivated by some observations of the Pacific Equatorial Undercurrent and thermocline, Phys. Fluids, 29 (2017), 056604.

[14]

A. Constantin and S. G. Monismith, Gerstner waves in the presence of mean currents and rotation, J. Fluid Mech., 820 (2017), 511-528. doi: 10.1017/jfm.2017.223.

[15]

R. Courant, Differential and Integral Calculus, John Wiley & Sons, Inc., New York, 1988.

[16]

B. Cushman-Roisin and J. M. Beckers, Introduction to Geophysical Fluid Dynamics: Physical and Numerical Aspects, vol. 101, Academic Press, 2011.

[17]

M. L. Dubreil-Jacotin, Sur les ondes de type permanent dans les liquides, Atti. Accad. Naz. Lincei, Mem. Cl. Sci. Fis. Mat. Nat., 15 (1932), 814-819.

[18]

F. Genoud and D. Henry, Instability of equatorial water waves with an underlying current, J. Math. Fluid Mech., 16 (2014), 661-667. doi: 10.1007/s00021-014-0175-4.

[19]

F. Gerstner, Theorie der wellen samt einer daraus abgeleiteten theorie der deichprofile, Ann. Phys., 2 (1809), 412-445.

[20]

H. Goldstein, C. P. Poole and J. L. Safko, Classical Mechanics, Pearson International Edition, Addison Wesley, 2002.

[21]

D. Henry, On Gerstner's water wave, J. Nonlin. Math. Phys., 15 (2008), 87-95. doi: 10.2991/jnmp.2008.15.S2.7.

[22]

D. Henry, An exact solution for equatorial geophysical water waves with an underlying current, Eur. J. Mech. B Fluids, 38 (2013), 18-21. doi: 10.1016/j.euromechflu.2012.10.001.

[23]

D. Henry, On three-dimensional Gerstner-like equatorial water waves, Phil. Trans. R. Soc. A, 376 (2018), 20170088, 16pp. doi: 10.1098/rsta.2017.0088.

[24]

D. Henry and H. C. Hsu, Instability of internal equatorial water waves, J. Diff. Eqn., 258 (2015), 1015-1024. doi: 10.1016/j.jde.2014.08.019.

[25]

D. Henry and S. Sastre-Gomez, Mean flow velocities and mass transport for equatorially-trapped water waves with an underlying current, J. Math. Fluid Mech., 18 (2016), 795-804. doi: 10.1007/s00021-016-0262-9.

[26]

D. Ionescu-Kruse, On the short-wavelength stabilities of some geophysical flows, Phil. Trans. R. Soc. A, 376 (2018), 20170090, 21pp. doi: 10.1098/rsta.2017.0090.

[27]

M. Kluczek, Exact and explicit internal equatorial water waves with underlying currents, J. Math. Fluid Mech., 19 (2017), 305-314. doi: 10.1007/s00021-016-0281-6.

[28]

T. Lyons, Particle trajectories in extreme Stokes waves over infinite depth, Disc. Contin. Dyn. Sys. Ser. A, 34 (2014), 3095-3107. doi: 10.3934/dcds.2014.34.3095.

[29]

T. Lyons, The pressure distribution in extreme Stokes waves, Nonlin. Anal. Real World Appl., 31 (2016), 77-87. doi: 10.1016/j.nonrwa.2016.01.008.

[30]

T. Lyons, The pressure in a deep-water Stokes wave of greatest height, J. Math. Fluid Mech., 18 (2016), 209–218. doi: 10.1007/s00021-016-0249-6.

[31]

T. Lyons, The dynamic pressure in deep-water extreme Stokes waves, Phil. Trans. R. Soc. A, 376 (2018), 20170095, 13pp. doi: 10.1098/rsta.2017.0095.

[32]

C. I. Martin, Dynamics of the thermocline in the equatorial region of the pacific ocean, J. Nonlin. Math. Phys., 22 (2015), 516-522. doi: 10.1080/14029251.2015.1113049.

[33]

A. V. Matioc, Exact geophysical waves in stratified fluids, Appl, Anal., 92 (2013), 2254-2261. doi: 10.1080/00036811.2012.727987.

[34]

W. J. M. Rankine, On the exact form of waves near the surface of deep water, Philos. Trans. R. Soc. London A, 153 (1863), 127-138.

[35]

A. Rodriguez-Sanjurjo, Global diffeomorphism of the Lagrangian flow-map for Equatorially-trapped internal water waves, Nonlin. Anal.: Theor., Meth. Appl., 149 (2017), 156-164. doi: 10.1016/j.na.2016.10.022.

[36]

A. Rodriguez-Sanjurjo and M. Kluczek, Mean flow properties for equatorially trapped internal water wave–current interactions, Appl. Anal., 96 (2017), 2333-2345. doi: 10.1080/00036811.2016.1221943.

[37]

K. W. S and M. M. J, Oceaninc equatorial waves and the 1991–1993 El Niño, J. Climate, 8 (1995), 1757-1774.

[38]

S. Sastre-Gomez, Global diffeomorphism of the Lagrangian flow-map defining equatorially trapped water waves, Nonlin. Anal., 125 (2015), 725-731. doi: 10.1016/j.na.2015.06.017.

[39]

G. G. Stokes, Considerations relative to the greatest height of oscillatory irrotational waves which can be propagated without change of form, Mathematical and Physical Papers, 1 (1880), 225-228.

[40]

J. F. Toland, Stokes waves, Topol. Meth. Nonlin. Anal., 7 (1996), 1-48. doi: 10.12775/TMNA.1996.001.

[41]

G. K. VallisD. J. Parker and S. M. Tobias, A simple system for moist convection: The rainy-Benard model, J. Fluid Mech., 862 (2019), 162-199. doi: 10.1017/jfm.2018.954.

[42]

S. H. C. Wacogne, Dynamics of the Equatorial Undercurrent and Its Termination, PhD thesis, Massachusetts Institute of Technology, 1988.

Figure 1.  The rotating $ \left(x,y,z\right) $-coordinate system fixed to the surface of the Earth. The $ x $-axis points due-east, the $ y $-axis points due-north and the $ z $-axis points vertically upwards from the surface
Figure 2.  A cross section of the flow in the equatorial plane $ y = 0 $ with a flow wavelength of $ L = 200\,\mathrm{m} $. The average depth of the near surface layer is $ 60\,\mathrm{m} $, while the thermocline lies at an average depth of $ 120\,\mathrm{m} $. The transitional layer begins at $ 160\, \mathrm{m} $ approximately, while the motionless layer begins at $ 200\,\mathrm{m} $ beneath the free surface
Figure 3.  The circular paths in the equatorial plane $ y = 0 $ traced by particles in the layer $ \mathcal{M}(t) $ are circles with centre $ (q,r-d_0) $ whose radius increases with depth. The wavelength of the solution shown is $ L = 200\ \mathrm{m} $. The particle trajectories are counterclockwise and the particle positions shown in the figure are at time $ t = 0 $
Figure 4.  A pictorial outline for the proof of Theorem 3.2, confirming the existence of a solution of the implicit relation $ G(s,r) = G(0,0) $ of extreme form
Figure 5.  The left-hand panel shows the graph $ (s,r_0(s)) $ when $ \kappa = 0.5 $ and $ L = 200 $ meters. The parameter $ d_0 = 120 $ ensures a mean equatorial depth of $ 120\, $m. In the right-hand panel the corresponding thermocline profile in the fluid domain, at the equatorial locations indicated in the figure
Figure 6.  The thermocline surface when $ L = 200\, $m, $ r_0^* = 0\, $m and $ d_0 = 120\, $m, with $ \kappa = 0.5 $. The surface is viewed from beneath and the value of $ \kappa $ has been chosen to emphasise the extreme behaviour of the wave along the equator at the wave-troughs
[1]

Mateusz Kluczek. Nonhydrostatic Pollard-like internal geophysical waves. Discrete & Continuous Dynamical Systems - A, 2019, 39 (9) : 5171-5183. doi: 10.3934/dcds.2019210

[2]

Jifeng Chu, Delia Ionescu-Kruse, Yanjuan Yang. Exact solution and instability for geophysical waves at arbitrary latitude. Discrete & Continuous Dynamical Systems - A, 2019, 39 (8) : 4399-4414. doi: 10.3934/dcds.2019178

[3]

Isabelle Gallagher. A mathematical review of the analysis of the betaplane model and equatorial waves. Discrete & Continuous Dynamical Systems - S, 2008, 1 (3) : 461-480. doi: 10.3934/dcdss.2008.1.461

[4]

David Henry, Hung-Chu Hsu. Instability of equatorial water waves in the $f-$plane. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 909-916. doi: 10.3934/dcds.2015.35.909

[5]

Anatoly Abrashkin. Wind generated equatorial Gerstner-type waves. Discrete & Continuous Dynamical Systems - A, 2019, 39 (8) : 4443-4453. doi: 10.3934/dcds.2019181

[6]

Jifeng Chu, Joachim Escher. Steady periodic equatorial water waves with vorticity. Discrete & Continuous Dynamical Systems - A, 2019, 39 (8) : 4713-4729. doi: 10.3934/dcds.2019191

[7]

Raphael Stuhlmeier. Internal Gerstner waves on a sloping bed. Discrete & Continuous Dynamical Systems - A, 2014, 34 (8) : 3183-3192. doi: 10.3934/dcds.2014.34.3183

[8]

José Raúl Quintero, Juan Carlos Muñoz Grajales. Solitary waves for an internal wave model. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5721-5741. doi: 10.3934/dcds.2016051

[9]

Jerry L. Bona, Henrik Kalisch. Models for internal waves in deep water. Discrete & Continuous Dynamical Systems - A, 2000, 6 (1) : 1-20. doi: 10.3934/dcds.2000.6.1

[10]

Vincent Duchêne, Samer Israwi, Raafat Talhouk. Shallow water asymptotic models for the propagation of internal waves. Discrete & Continuous Dynamical Systems - S, 2014, 7 (2) : 239-269. doi: 10.3934/dcdss.2014.7.239

[11]

Hung-Chu Hsu. Exact azimuthal internal waves with an underlying current. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4391-4398. doi: 10.3934/dcds.2017188

[12]

Tony Lyons. Particle trajectories in extreme Stokes waves over infinite depth. Discrete & Continuous Dynamical Systems - A, 2014, 34 (8) : 3095-3107. doi: 10.3934/dcds.2014.34.3095

[13]

Ralph Lteif, Samer Israwi, Raafat Talhouk. An improved result for the full justification of asymptotic models for the propagation of internal waves. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2203-2230. doi: 10.3934/cpaa.2015.14.2203

[14]

Delia Ionescu-Kruse, Anca-Voichita Matioc. Small-amplitude equatorial water waves with constant vorticity: Dispersion relations and particle trajectories. Discrete & Continuous Dynamical Systems - A, 2014, 34 (8) : 3045-3060. doi: 10.3934/dcds.2014.34.3045

[15]

Anna Geyer, Ronald Quirchmayr. Shallow water models for stratified equatorial flows. Discrete & Continuous Dynamical Systems - A, 2019, 39 (8) : 4533-4545. doi: 10.3934/dcds.2019186

[16]

Adrian Constantin. Dispersion relations for periodic traveling water waves in flows with discontinuous vorticity. Communications on Pure & Applied Analysis, 2012, 11 (4) : 1397-1406. doi: 10.3934/cpaa.2012.11.1397

[17]

Xiao-Biao Lin, Stephen Schecter. Traveling waves and shock waves. Discrete & Continuous Dynamical Systems - A, 2004, 10 (4) : i-ii. doi: 10.3934/dcds.2004.10.4i

[18]

Maria José Pacifico, Fan Yang. Hitting times distribution and extreme value laws for semi-flows. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5861-5881. doi: 10.3934/dcds.2017255

[19]

Calin Iulian Martin. A Hamiltonian approach for nonlinear rotational capillary-gravity water waves in stratified flows. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 387-404. doi: 10.3934/dcds.2017016

[20]

Biswajit Basu. On an exact solution of a nonlinear three-dimensional model in ocean flows with equatorial undercurrent and linear variation in density. Discrete & Continuous Dynamical Systems - A, 2019, 39 (8) : 4783-4796. doi: 10.3934/dcds.2019195

2017 Impact Factor: 1.179

Article outline

Figures and Tables

[Back to Top]