A two-layer fluid system separated by a pycnocline in the form of an internal wave is considered. The lower layer is infinitely deep, with a higher density than the upper layer which is bounded above by a flat surface. The fluids are incompressible and inviscid. A Hamiltonian formulation for the dynamics in the presence of a depth-varying current is presented and it is shown that an appropriate scaling leads to the integrable Benjamin-Ono equation.
Citation: |
[1] |
T. B. Benjamin, Internal waves of permanent form in fluids of great depth, J. Fluid Mech., 29 (1967), 559-562.
doi: 10.1017/S002211206700103X.![]() ![]() |
[2] |
T. B. Benjamin and T. J. Bridges, Reappraisal of the Kelvin-Helmholtz problem, Part 1. Hamiltonian structure, J. Fluid Mech., 333 (1997), 301-325.
doi: 10.1017/S0022112096004272.![]() ![]() ![]() |
[3] |
T. B. Benjamin and T. J. Bridges, Reappraisal of the Kelvin-Helmholtz problem, Part 2. Interaction of the Kelvin-Helmholtz, superharmonic and Benjamin-Feir instabilities, J. Fluid Mech., 333 (1997), 327-373.
doi: 10.1017/S0022112096004284.![]() ![]() ![]() |
[4] |
T. B. Benjamin and P. J. Olver, Hamiltonian structure, symmetries and conservation laws for water waves, J. Fluid Mech., 125 (1982), 137-185.
doi: 10.1017/S0022112082003292.![]() ![]() ![]() |
[5] |
J. L. Bona, D. Lannes and J.-C. Saut, Asymptotic models for internal waves, J. Math. Pures Appl., 89 (2008), 538-566.
doi: 10.1016/j.matpur.2008.02.003.![]() ![]() ![]() |
[6] |
A. Compelli, Hamiltonian formulation of 2 bounded immiscible media with constant non-zero vorticities and a common interface, Wave Motion, 54 (2015), 115-124.
doi: 10.1016/j.wavemoti.2014.11.015.![]() ![]() ![]() |
[7] |
A. Compelli, Hamiltonian approach to the modeling of internal geophysical waves with vorticity, Monatsh. Math., 179 (2016), 509-521.
doi: 10.1007/s00605-014-0724-1.![]() ![]() ![]() |
[8] |
A. Compelli and R. Ivanov, On the dynamics of internal waves interacting with the Equatorial Undercurrent, J. Nonlinear Math. Phys., 22 (2015), 531-539.
doi: 10.1080/14029251.2015.1113052.![]() ![]() ![]() |
[9] |
A. Compelli and R. Ivanov, The dynamics of flat surface internal geophysical waves with currents, J. Math. Fluid Mech., 19 (2017), 329-344.
doi: 10.1007/s00021-016-0283-4.![]() ![]() ![]() |
[10] |
A. Constantin, Nonlinear water waves with applications to wave-current interactions and tsunamis,, CBMS-NSF Regional Conference Series in Applied Mathematics, 81 Society for Industrial and Applied Mathematics, Philadelphia, 2011.
doi: 10.1137/1.9781611971873.![]() ![]() ![]() |
[11] |
A. Constantin and J. Escher, Symmetry of steady periodic surface water waves with vorticity, J. Fluid Mech., 498 (2004), 171-181.
doi: 10.1017/S0022112003006773.![]() ![]() ![]() |
[12] |
A. Constantin and J. Escher, Analyticity of periodic traveling free surface water waves with vorticity, Ann.Math., 173 (2011), 559-568.
doi: 10.4007/annals.2011.173.1.12.![]() ![]() ![]() |
[13] |
A. Constantin and R. Ivanov, A Hamiltonian approach to wave-current interactions in two-layer fluids, Phys. Fluids, 27 (2015), 086603.
doi: 10.1063/1.4929457.![]() ![]() |
[14] |
A. Constantin, R. Ivanov and C. -I. Martin, Hamiltonian formulation for wave-current interactions in stratified rotational flows, Arch. Rational Mech. Anal., 221 (2016), 1417-1447.
doi: 10.1007/s00205-016-0990-2.![]() ![]() ![]() |
[15] |
A. Constantin, R. Ivanov and E. Prodanov, Nearly-Hamiltonian structure for water waves with constant vorticity, J. Math. Fluid Mech., 10 (2008), 224-237.
doi: 10.1007/s00021-006-0230-x.![]() ![]() ![]() |
[16] |
A. Constantin and R. S. Johnson, The dynamics of waves interacting with the Equatorial Undercurrent, Geophys. Astrophys. Fluid Dyn., 109 (2015), 311-358.
doi: 10.1080/03091929.2015.1066785.![]() ![]() ![]() |
[17] |
A. Constantin, D. Sattinger and W. Strauss, Variational formulations for steady water waves with vorticity, J. Fluid Mech., 548 (2006), 151-163.
doi: 10.1017/S0022112005007469.![]() ![]() ![]() |
[18] |
A. Constantin and W. Strauss, Exact steady periodic water waves with vorticity, Comm. Pure Appl. Math., 57 (2004), 481-527.
doi: 10.1002/cpa.3046.![]() ![]() ![]() |
[19] |
W. Craig and M. Groves, Hamiltonian long-wave approximations to the water-wave problem, Wave Motion, 19 (1994), 367-389.
doi: 10.1016/0165-2125(94)90003-5.![]() ![]() ![]() |
[20] |
W. Craig, P. Guyenne and H. Kalisch, Hamiltonian long-wave expansions for free surfaces and interfaces, Comm. Pure Appl. Math., 58 (2005), 1587-1641.
doi: 10.1002/cpa.20098.![]() ![]() ![]() |
[21] |
W. Craig, P. Guyenne and C. Sulem, Coupling between internal and surface waves, Nat. Hazards, 57 (2011), 617-642.
doi: 10.1007/s11069-010-9535-4.![]() ![]() |
[22] |
W. Craig and C. Sulem, Numerical simulation of gravity waves, J. Comp. Phys., 108 (1993), 73-83.
doi: 10.1006/jcph.1993.1164.![]() ![]() ![]() |
[23] |
A. V. Fedorov and J. N. Brown, Equatorial waves, in Encyclopedia of Ocean Sciences (ed. J. Steele), Academic, San Diego, Calif., 2009,271–287.
doi: 10.1016/B978-012374473-9.00610-X.![]() ![]() |
[24] |
A. S. Fokas and M. J. Ablowitz, The inverse scattering transform for the Benjamin-Ono equation – a pivot to multidimensional problems, Stud. Appl. Math., 68 (1983), 1-10.
doi: 10.1002/sapm19836811.![]() ![]() ![]() |
[25] |
R. S. Johnson, A Modern Introduction to the Mathematical Theory of Water Waves, Cambridge University Press, Cambridge, 1997.
doi: 10.1017/CBO9780511624056.![]() ![]() ![]() |
[26] |
I. G. Jonsson, Wave-current interactions, In: The sea 9 (1990), Wiley: New York, 65–120.
![]() |
[27] |
D. J. Kaup and Y. Matsuno, The inverse scattering transform for the Benjamin-Ono equation, Stud. Appl. Math., 101 (1998), 73-98.
doi: 10.1111/1467-9590.00086.![]() ![]() ![]() |
[28] |
D. Milder, A note regarding `On Hamilton's principle for water waves', J. Fluid Mech., 83 (1977), 159-161.
![]() |
[29] |
J. Miles, On Hamilton's principle for water waves, J. Fluid Mech., 83 (1977), 153-158.
doi: 10.1017/S0022112077001104.![]() ![]() ![]() |
[30] |
F. Nansen, Farthest North: Volume I, Harper and Brothers, 1897.
![]() |
[31] |
H. Ono, Algebraic solitary waves in stratified fluids, J. Phys.Soc. Japan, 39 (1975), 1082-1091.
doi: 10.1143/JPSJ.39.1082.![]() ![]() ![]() |
[32] |
D. H. Peregrine, Interaction of water waves and currents, Adv. Appl. Mech., 16 (1976), 9-117.
![]() |
[33] |
A. F. Teles da Silva and D. H. Peregrine, Steep, steady surface waves on water of finite depth with constant vorticity, J. Fluid Mech., 195 (1988), 281-302.
doi: 10.1017/S0022112088002423.![]() ![]() ![]() |
[34] |
G. P. Thomas and G. Klopman, Wave-current interactions in the near-shore region, In: Gravity Waves in Water of Finite Depth, Advances in Fluid Mechanics, Computational Mechanics Publications, 1997.
![]() |
[35] |
E. Wahlén, A Hamiltonian formulation of water waves with constant vorticity, Lett. Math. Phys., 79 (2007), 303-315.
doi: 10.1007/s11005-007-0143-5.![]() ![]() ![]() |
[36] |
V. Zakharov, Stability of periodic waves of finite amplitude on the surface of a deep fluid,, Zh. Prikl. Mekh. Tekh. Fiz., 9 (1968), 86–94 (in Russian); J. Appl. Mech. Tech. Phys., 9 (1968), 190–194 (English translation).
doi: 10.1007/BF00913182.![]() ![]() |
The system under study