August  2019, 39(8): 4533-4545. doi: 10.3934/dcds.2019186

Shallow water models for stratified equatorial flows

1. 

Delft University of Technology, Delft Institute of Applied Mathematics, Faculty of EEMCS, Mekelweg 4, 2628 CD Delft, The Netherlands

2. 

KTH Royal Institute of Technology, Department of Mathematics, Lindstedtsvägen 25,100 44 Stockholm, Sweden

* Corresponding author: Ronald Quirchmayr

The paper is for the special theme: Mathematical Aspects of Physical Oceanography, organized by Adrian Constantin.

Received  August 2018 Revised  October 2018 Published  May 2019

Fund Project: Both authors acknowledge the support of the Erwin Schrödinger International Institute for Mathematics and Physics (ESI) during the program "Mathematical Aspects of Physical Oceanography". R. Quirchmayr acknowledges the support of the European Research Council, Consolidator Grant No. 682537.

Our aim is to study the effect of a continuous prescribed density variation on the propagation of ocean waves. More precisely, we derive KdV-type shallow water model equations for unidirectional flows along the Equator from the full governing equations by taking into account a prescribed but arbitrary depth-dependent density distribution. In contrast to the case of constant density, we obtain for each fixed water depth a different model equation for the horizontal component of the velocity field. We derive explicit formulas for traveling wave solutions of these model equations and perform a detailed analysis of the effect of a given density distribution on the depth-structure of the corresponding traveling waves.

Citation: Anna Geyer, Ronald Quirchmayr. Shallow water models for stratified equatorial flows. Discrete & Continuous Dynamical Systems - A, 2019, 39 (8) : 4533-4545. doi: 10.3934/dcds.2019186
References:
[1]

T. B. Benjamin, The stability of solitary waves, Proc. Roy. Soc. London A, 328 (1972), 153-183.  doi: 10.1098/rspa.1972.0074.  Google Scholar

[2]

J. L. BonaP. E. Souganidis and W. Strauss, Stability and instability of solitary waves of korteweg-de vries type, Proc. Roy. Soc. London A, 411 (1987), 395-412.  doi: 10.1098/rspa.1987.0073.  Google Scholar

[3]

A. Constantin, Nonlinear Water Waves with Applications to Wave-Current Interactions and Tsunamis, CBMS-NSF Regional Conference Series in Applied Mathematics, SIAM, Philadelphia, 2011. doi: 10.1137/1.9781611971873.  Google Scholar

[4]

A. Constantin, On the modelling of equatorial waves, Geophys. Res. Lett., 39 (2012), Art. No. L05602. doi: 10.1029/2012GL051169.  Google Scholar

[5]

A. Constantin, An exact solution for equatorially trapped waves, J. Geophys. Res. Oceans, 117 (2012), Art. No. C05029. doi: 10.1029/2012JC007879.  Google Scholar

[6]

A. Constantin, Some three-dimensional nonlinear equatorial flows, J. Phys. Oceanogr, 43 (2013), 165-175.  doi: 10.1175/JPO-D-12-062.1.  Google Scholar

[7]

A. Constantin, Some nonlinear, equatorially trapped, nonhydrostatic internal geophysical waves, J. Phys. Oceanogr, 44 (2014), 781-789.  doi: 10.1175/JPO-D-13-0174.1.  Google Scholar

[8]

A. Constantin and R. I. Ivanov, A hamiltonian approach to wave-current interactions in two-layer fluids, Phys. Fluids., 27 (2015), Art. No. 086603. doi: 10.1063/1.4929457.  Google Scholar

[9]

A. ConstantinR. I. Ivanov and C. I. Martin, Hamiltonian formulation for wave-current interactions in stratified rotational flows, Arch. Ration. Mech. Anal., 221 (2016), 1417-1447.  doi: 10.1007/s00205-016-0990-2.  Google Scholar

[10]

A. Constantin and R. S. Johnson, On the non-dimensionalisation, scaling and resulting interpretation of the classical governing equations for water waves, J. Nonlinear Math. Phys., 15 (2008), 58-73.  doi: 10.2991/jnmp.2008.15.s2.5.  Google Scholar

[11]

A. Constantin and R. S. Johnson, The dynamics of waves interacting with the Equatorial Undercurrent, Geophys. Astrophys. Fluid Dyn., 109 (2015), 311-358.  doi: 10.1080/03091929.2015.1066785.  Google Scholar

[12]

A. Constantin and R. S. Johnson, An exact, steady, purely azimuthal equatorial flow with a free surface, J. Phys. Oceanogr, 46 (2016), 1935-1945.  doi: 10.1175/JPO-D-15-0205.1.  Google Scholar

[13]

A. Constantin and R. S. Johnson, Current and future prospects for the application of systematic theoretical methods to the study of problems in physical oceanography, Phys. Lett. A, 380 (2016), 3007-3012.  doi: 10.1016/j.physleta.2016.07.036.  Google Scholar

[14]

A. Constantin and R. S. Johnson, A nonlinear, three-dimensional model for ocean flows, motivated by some observations of the Pacific Equatorial Undercurrent and thermocline, Phys. Fluids., 29 (2017), 056604. Google Scholar

[15]

B. Deconinck and T. Kapitula, The orbital stability of the cnoidal waves of the Korteweg-de Vries equation, Phys. Lett. A, 374 (2010), 4018-4022.  doi: 10.1016/j.physleta.2010.08.007.  Google Scholar

[16]

M. W. Dingemans, Water Wave Propagation Over Uneven Bottoms, World Scientific, 1997. Google Scholar

[17]

P. G. Drazin and R. S. Johnson, Solitons: An Introduction, Cambridge University Press, Cambridge, UK, 1989. doi: 10.1017/CBO9781139172059.  Google Scholar

[18]

L. D. Faddeev and V. E. Zakharov, Kortweg-de Vries equation: A completely integrable Hamiltonian system, (Russian) Funkcional. Anal. i Prilovien., 5 (1971), 18–27.  Google Scholar

[19]

A. V. Fedorov and J. N. Brown, Equatorial waves, Encyclopedia of Ocean Sciences, edited by J. Steele, 3679–3695, Academic Press: New York (2009). Google Scholar

[20]

C. S. GardnerJ. M. GreeneM. D. Kruskal and R. M. Miura, Method for solving the Korteweg-de Vries equation, Phys. Rev. Lett., 19 (1967), 1095-1097.   Google Scholar

[21]

A. Geyer and R. Quirchmayr, Shallow water equations for equatorial tsunami waves, Phil. Trans. R. Soc. A, 376 (2018), 20170100, 12pp. doi: 10.1098/rsta.2017.0100.  Google Scholar

[22]

D. Ionescu-Kruse and C. I. Martin, Periodic equatorial water flows from a Hamiltonian perspective, J. Differ. Equ., 262 (2017), 4451-4474.  doi: 10.1016/j.jde.2017.01.001.  Google Scholar

[23]

R. I. Ivanov, Hamiltonian model for coupled surface and internal waves in the presence of currents, Nonlinear Anal. Real World Appl., 34 (2017), 316-334.  doi: 10.1016/j.nonrwa.2016.09.010.  Google Scholar

[24] R. S. Johnson, A Modern Introduction to the Mathematical Theory of Water Waves, Cambridge University Press, Cambridge, UK, 1997.  doi: 10.1017/CBO9780511624056.  Google Scholar
[25]

R. S. Johnson, Camassa-Holm, Korteweg-de Vries and related models for water waves, J. Fluid Mech., 455 (2002), 63-82.  doi: 10.1017/S0022112001007224.  Google Scholar

[26]

R. S. Johnson, An ocean undercurrent, a thermocline, a free surface, with waves: a problem in classical fluid mechanics, J. Nonlinear Math. Phys., 22 (2015), 475-493.  doi: 10.1080/14029251.2015.1113042.  Google Scholar

[27]

R. S. Johnson, Application of the ideas and techniques of classical fluid mechanics to some problems in physical oceanography, Phil. Trans. R. Soc. A, 376 (2018), 20170092, 19pp. doi: 10.1098/rsta.2017.0092.  Google Scholar

[28]

T. Kappeler and J. Pöschel, KdV & KAM, Ergeb. der Math. und ihrer Grenzgeb., Springer, Berlin-Heidelberg-New York, 2003. doi: 10.1007/978-3-662-08054-2.  Google Scholar

[29]

D. J. Korteweg and G. de Vries, On the change of form of long waves advancing in a rectangular canal and on a new type of long stationary waves, Phil. Mag., 39 (1895), 422-443.  doi: 10.1080/14786449508620739.  Google Scholar

[30]

P. Lax, Integrals of nonlinear equations of evolution and solitary waves, Comm. Pure Appl. Math., 21 (1968), 467-490.  doi: 10.1002/cpa.3160210503.  Google Scholar

[31]

P. H. LeBlond and L. A. Mysak, Waves in the Ocean, Elsevier, Amsterdam, 1978. Google Scholar

[32]

C. I. Martin, Dynamics of the thermocline in the equatorial region of the Pacific ocean, J. Nonlinear Math. Phys., 22 (2015), 516-522.  doi: 10.1080/14029251.2015.1113049.  Google Scholar

[33]

S. Walsh, Stratified steady periodic water waves, SIAM J. Math. Anal., 41 (2009), 1054-1105.  doi: 10.1137/080721583.  Google Scholar

show all references

References:
[1]

T. B. Benjamin, The stability of solitary waves, Proc. Roy. Soc. London A, 328 (1972), 153-183.  doi: 10.1098/rspa.1972.0074.  Google Scholar

[2]

J. L. BonaP. E. Souganidis and W. Strauss, Stability and instability of solitary waves of korteweg-de vries type, Proc. Roy. Soc. London A, 411 (1987), 395-412.  doi: 10.1098/rspa.1987.0073.  Google Scholar

[3]

A. Constantin, Nonlinear Water Waves with Applications to Wave-Current Interactions and Tsunamis, CBMS-NSF Regional Conference Series in Applied Mathematics, SIAM, Philadelphia, 2011. doi: 10.1137/1.9781611971873.  Google Scholar

[4]

A. Constantin, On the modelling of equatorial waves, Geophys. Res. Lett., 39 (2012), Art. No. L05602. doi: 10.1029/2012GL051169.  Google Scholar

[5]

A. Constantin, An exact solution for equatorially trapped waves, J. Geophys. Res. Oceans, 117 (2012), Art. No. C05029. doi: 10.1029/2012JC007879.  Google Scholar

[6]

A. Constantin, Some three-dimensional nonlinear equatorial flows, J. Phys. Oceanogr, 43 (2013), 165-175.  doi: 10.1175/JPO-D-12-062.1.  Google Scholar

[7]

A. Constantin, Some nonlinear, equatorially trapped, nonhydrostatic internal geophysical waves, J. Phys. Oceanogr, 44 (2014), 781-789.  doi: 10.1175/JPO-D-13-0174.1.  Google Scholar

[8]

A. Constantin and R. I. Ivanov, A hamiltonian approach to wave-current interactions in two-layer fluids, Phys. Fluids., 27 (2015), Art. No. 086603. doi: 10.1063/1.4929457.  Google Scholar

[9]

A. ConstantinR. I. Ivanov and C. I. Martin, Hamiltonian formulation for wave-current interactions in stratified rotational flows, Arch. Ration. Mech. Anal., 221 (2016), 1417-1447.  doi: 10.1007/s00205-016-0990-2.  Google Scholar

[10]

A. Constantin and R. S. Johnson, On the non-dimensionalisation, scaling and resulting interpretation of the classical governing equations for water waves, J. Nonlinear Math. Phys., 15 (2008), 58-73.  doi: 10.2991/jnmp.2008.15.s2.5.  Google Scholar

[11]

A. Constantin and R. S. Johnson, The dynamics of waves interacting with the Equatorial Undercurrent, Geophys. Astrophys. Fluid Dyn., 109 (2015), 311-358.  doi: 10.1080/03091929.2015.1066785.  Google Scholar

[12]

A. Constantin and R. S. Johnson, An exact, steady, purely azimuthal equatorial flow with a free surface, J. Phys. Oceanogr, 46 (2016), 1935-1945.  doi: 10.1175/JPO-D-15-0205.1.  Google Scholar

[13]

A. Constantin and R. S. Johnson, Current and future prospects for the application of systematic theoretical methods to the study of problems in physical oceanography, Phys. Lett. A, 380 (2016), 3007-3012.  doi: 10.1016/j.physleta.2016.07.036.  Google Scholar

[14]

A. Constantin and R. S. Johnson, A nonlinear, three-dimensional model for ocean flows, motivated by some observations of the Pacific Equatorial Undercurrent and thermocline, Phys. Fluids., 29 (2017), 056604. Google Scholar

[15]

B. Deconinck and T. Kapitula, The orbital stability of the cnoidal waves of the Korteweg-de Vries equation, Phys. Lett. A, 374 (2010), 4018-4022.  doi: 10.1016/j.physleta.2010.08.007.  Google Scholar

[16]

M. W. Dingemans, Water Wave Propagation Over Uneven Bottoms, World Scientific, 1997. Google Scholar

[17]

P. G. Drazin and R. S. Johnson, Solitons: An Introduction, Cambridge University Press, Cambridge, UK, 1989. doi: 10.1017/CBO9781139172059.  Google Scholar

[18]

L. D. Faddeev and V. E. Zakharov, Kortweg-de Vries equation: A completely integrable Hamiltonian system, (Russian) Funkcional. Anal. i Prilovien., 5 (1971), 18–27.  Google Scholar

[19]

A. V. Fedorov and J. N. Brown, Equatorial waves, Encyclopedia of Ocean Sciences, edited by J. Steele, 3679–3695, Academic Press: New York (2009). Google Scholar

[20]

C. S. GardnerJ. M. GreeneM. D. Kruskal and R. M. Miura, Method for solving the Korteweg-de Vries equation, Phys. Rev. Lett., 19 (1967), 1095-1097.   Google Scholar

[21]

A. Geyer and R. Quirchmayr, Shallow water equations for equatorial tsunami waves, Phil. Trans. R. Soc. A, 376 (2018), 20170100, 12pp. doi: 10.1098/rsta.2017.0100.  Google Scholar

[22]

D. Ionescu-Kruse and C. I. Martin, Periodic equatorial water flows from a Hamiltonian perspective, J. Differ. Equ., 262 (2017), 4451-4474.  doi: 10.1016/j.jde.2017.01.001.  Google Scholar

[23]

R. I. Ivanov, Hamiltonian model for coupled surface and internal waves in the presence of currents, Nonlinear Anal. Real World Appl., 34 (2017), 316-334.  doi: 10.1016/j.nonrwa.2016.09.010.  Google Scholar

[24] R. S. Johnson, A Modern Introduction to the Mathematical Theory of Water Waves, Cambridge University Press, Cambridge, UK, 1997.  doi: 10.1017/CBO9780511624056.  Google Scholar
[25]

R. S. Johnson, Camassa-Holm, Korteweg-de Vries and related models for water waves, J. Fluid Mech., 455 (2002), 63-82.  doi: 10.1017/S0022112001007224.  Google Scholar

[26]

R. S. Johnson, An ocean undercurrent, a thermocline, a free surface, with waves: a problem in classical fluid mechanics, J. Nonlinear Math. Phys., 22 (2015), 475-493.  doi: 10.1080/14029251.2015.1113042.  Google Scholar

[27]

R. S. Johnson, Application of the ideas and techniques of classical fluid mechanics to some problems in physical oceanography, Phil. Trans. R. Soc. A, 376 (2018), 20170092, 19pp. doi: 10.1098/rsta.2017.0092.  Google Scholar

[28]

T. Kappeler and J. Pöschel, KdV & KAM, Ergeb. der Math. und ihrer Grenzgeb., Springer, Berlin-Heidelberg-New York, 2003. doi: 10.1007/978-3-662-08054-2.  Google Scholar

[29]

D. J. Korteweg and G. de Vries, On the change of form of long waves advancing in a rectangular canal and on a new type of long stationary waves, Phil. Mag., 39 (1895), 422-443.  doi: 10.1080/14786449508620739.  Google Scholar

[30]

P. Lax, Integrals of nonlinear equations of evolution and solitary waves, Comm. Pure Appl. Math., 21 (1968), 467-490.  doi: 10.1002/cpa.3160210503.  Google Scholar

[31]

P. H. LeBlond and L. A. Mysak, Waves in the Ocean, Elsevier, Amsterdam, 1978. Google Scholar

[32]

C. I. Martin, Dynamics of the thermocline in the equatorial region of the Pacific ocean, J. Nonlinear Math. Phys., 22 (2015), 516-522.  doi: 10.1080/14029251.2015.1113049.  Google Scholar

[33]

S. Walsh, Stratified steady periodic water waves, SIAM J. Math. Anal., 41 (2009), 1054-1105.  doi: 10.1137/080721583.  Google Scholar

Figure 1.  Fig. 1a illustrates the fluid domain in the physical $({\bar x}, {\bar z})$-plane between the flat bed at ${\bar z}= 0$ and the free surface ${\bar z} = {\bar h}_0+{\bar \eta }(\cdot, {\bar t})$ at a certain instant of time ${\bar t}$. The average water level ${\bar h}_0$ is indicated by a dashed line, ${{\bar \lambda } }$ shows the distance between two consecutive crests and ${\bar a}$ is the vertical deviation of a typical crest from ${\bar h}_0$. Fig. 1b shows a prescribed depth dependent density distribution ${\bar \rho }({\bar z})$ with a significant density increase in the region between the two dotted horizontal lines close to the surface giving rise to a pycnocline
Figure 2.  Solitary traveling wave solutions (26) of the surface equation (20) with linear density function $\rho (z) = 1+A(1-z)$. In Fig. 2a we see that for larger values of the parameter $A>0$ the profile becomes taller and also wider. In Fig. 2b we see how the amplitude of solutions decreases with depth $z\in [0, 1]$ like $(Az)^{-1}$ according to (27)
Figure 3.  In Fig. 3a we see a plot of the density profile $\rho (z) = a_0-a_1\arctan\left(a_2(z-a_3)\right)$ defined in (29) for suitable choices of parameter values $a_i\in\mathbb{R}$ to model a density increase of $1\%$ from surface to bed. Fig. 3b shows a schematic representation of the fact that the amplitude of solitary wave solutions $\phi(\xi-c\tau, z)$ decays with depth inversely proportional to $\rho(z)$, cf. (27)
[1]

Md. Masum Murshed, Kouta Futai, Masato Kimura, Hirofumi Notsu. Theoretical and numerical studies for energy estimates of the shallow water equations with a transmission boundary condition. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1063-1078. doi: 10.3934/dcdss.2020230

[2]

Bilal Al Taki, Khawla Msheik, Jacques Sainte-Marie. On the rigid-lid approximation of shallow water Bingham. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 875-905. doi: 10.3934/dcdsb.2020146

[3]

Chueh-Hsin Chang, Chiun-Chuan Chen, Chih-Chiang Huang. Traveling wave solutions of a free boundary problem with latent heat effect. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021028

[4]

Ching-Hui Wang, Sheng-Chen Fu. Traveling wave solutions to diffusive Holling-Tanner predator-prey models. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021007

[5]

Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163

[6]

Jong-Shenq Guo, Ken-Ichi Nakamura, Toshiko Ogiwara, Chang-Hong Wu. The sign of traveling wave speed in bistable dynamics. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3451-3466. doi: 10.3934/dcds.2020047

[7]

Ran Zhang, Shengqiang Liu. On the asymptotic behaviour of traveling wave solution for a discrete diffusive epidemic model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1197-1204. doi: 10.3934/dcdsb.2020159

[8]

Yoichi Enatsu, Emiko Ishiwata, Takeo Ushijima. Traveling wave solution for a diffusive simple epidemic model with a free boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 835-850. doi: 10.3934/dcdss.2020387

[9]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[10]

Xu Zhang, Chuang Zheng, Enrique Zuazua. Time discrete wave equations: Boundary observability and control. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 571-604. doi: 10.3934/dcds.2009.23.571

[11]

Marcello D'Abbicco, Giovanni Girardi, Giséle Ruiz Goldstein, Jerome A. Goldstein, Silvia Romanelli. Equipartition of energy for nonautonomous damped wave equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 597-613. doi: 10.3934/dcdss.2020364

[12]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[13]

Masaharu Taniguchi. Axisymmetric traveling fronts in balanced bistable reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3981-3995. doi: 10.3934/dcds.2020126

[14]

Duy Phan. Approximate controllability for Navier–Stokes equations in $ \rm3D $ cylinders under Lions boundary conditions by an explicit saturating set. Evolution Equations & Control Theory, 2021, 10 (1) : 199-227. doi: 10.3934/eect.2020062

[15]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, 2021, 20 (1) : 389-404. doi: 10.3934/cpaa.2020273

[16]

Bopeng Rao, Zhuangyi Liu. A spectral approach to the indirect boundary control of a system of weakly coupled wave equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 399-414. doi: 10.3934/dcds.2009.23.399

[17]

Jonathan J. Wylie, Robert M. Miura, Huaxiong Huang. Systems of coupled diffusion equations with degenerate nonlinear source terms: Linear stability and traveling waves. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 561-569. doi: 10.3934/dcds.2009.23.561

[18]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[19]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[20]

José Luiz Boldrini, Jonathan Bravo-Olivares, Eduardo Notte-Cuello, Marko A. Rojas-Medar. Asymptotic behavior of weak and strong solutions of the magnetohydrodynamic equations. Electronic Research Archive, 2021, 29 (1) : 1783-1801. doi: 10.3934/era.2020091

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (152)
  • HTML views (139)
  • Cited by (1)

Other articles
by authors

[Back to Top]