
-
Previous Article
On stratified water waves with critical layers and Coriolis forces
- DCDS Home
- This Issue
-
Next Article
Steady periodic equatorial water waves with vorticity
Infinity-harmonic potentials and their streamlines
1. | Department of Mathematics, Uppsala University, Box 480, 751 06 Uppsala, Sweden |
2. | Department of Mathematical Sciences, Norwegian University of Science and Technology, N–7491, Trondheim, Norway |
We consider certain solutions of the Infinity-Laplace Equation in planar convex rings. Their ascending streamlines are unique while the descending ones may bifurcate. We prove that bifurcation occurs in the generic situation and as a consequence, the solutions cannot have Lipschitz continuous gradients.
References:
[1] |
G. Aronsson,
Extension of functions satisfying Lipschitz conditions, Arkiv För Matematik, 6 (1967), 551-561.
doi: 10.1007/BF02591928. |
[2] |
G. Aronsson,
On the partial differential equation $u_x^2u_xx+2u_xu_yu_xy+u_y^2u_yy = 0, $, Arkiv för Matematik, 7 (1968), 397-425.
doi: 10.1007/BF02590989. |
[3] |
V. Caselles, J.-M. Morel and C. Sbert,
An axiomatic approach to image interpolation, IEEE Transactions on Image Processing, 7 (1998), 376-386.
doi: 10.1109/83.661188. |
[4] |
M. Crandall, H. Ishii and P.-L. Lions,
User's guide to viscosity solutions of second order partial differential equations, Bulletin of the American Mathematical Society, 27 (1992), 1-67.
doi: 10.1090/S0273-0979-1992-00266-5. |
[5] |
G. Crasta and I. Fragalà,
On the characterization of some classes of proximally smooth sets, ESAIM: Control, Optimisation and Calculus of Variations, 22 (2016), 710-727.
doi: 10.1051/cocv/2015022. |
[6] |
G. Crasta and I. Fragalà,
On the Dirichlet and Serrin problems for the inhomogeneous infinity Laplacian in convex domains: regularity and geometric results, Archive for Rational Mechanics and Analysis, 218 (2015), 1577-1607.
doi: 10.1007/s00205-015-0888-4. |
[7] |
L. Evans and R. Gariepy, Measure Theory and Fine Propeties of Functions, CRC Press, Boca Raton, 1992.
![]() ![]() |
[8] |
L. Evans and O. Savin,
$C^{1, \alpha}$regularity of infinite harmonic functios in two dimensions, Calculus of Variations and Partial Differential Equations, 32 (2008), 325-347.
doi: 10.1007/s00526-007-0143-4. |
[9] |
L. Evans and Ch. Smart,
Everywhere differentiability of infinity harmonic functions, Calculus of Variations and Partial Differential Equations, 42 (2011), 289-299.
doi: 10.1007/s00526-010-0388-1. |
[10] |
U. Janfalk,
Behaviour in the limit, as $p \to \infty$, of minimizers of functionals involving $p$-Dirichlet integrals, SIAM Journal on Mathematical Analysis, 27 (1996), 341-360.
doi: 10.1137/S0036141093252619. |
[11] |
R. Jensen,
Uniqueness of Lipschitz extension: Minimizing the sup norm of the gradient, Archive for Rational Mechanics and Analysis, 123 (1993), 51-74.
doi: 10.1007/BF00386368. |
[12] |
V. Julin and P. Juutinen,
A new proof for the equivalence of weak and viscosity solutions for the $p$-Laplace equation, Communications on Partial Differential Equations, 37 (2012), 934-946.
doi: 10.1080/03605302.2011.615878. |
[13] |
P. Juutinen, P. Lindqvist and J. Manfredi.,
On the equivalence of viscosity solutions and weak solutions for a quasi-linear equation, SIAM Journal on Mathematical Analysis, 33 (2001), 699-717.
doi: 10.1137/S0036141000372179. |
[14] |
P. Juutinen, P. Lindqvist and J. Manfredi.,
The infinity Laplacian: examples and observations, Papers on analysis, Rep. Univ. Jyväskylä Dep. Math. Stat. Univ. Jyväskylä, 83 (2001), 207-217.
|
[15] |
P. Juutinen, P. Lindqvist and J. Manfredi,
The $\infty$-eigenvalue problem, Archive for Rational Mechanics and Analysis, 148 (1999), 89-105.
doi: 10.1007/s002050050157. |
[16] |
H. Koch, Y. Zhang and Y. Zhou, An asymptotic sharp Sobolev regularity for planar infinity harmonic functions, Journal de Mathématiques Pures et Appliquées, 2019, arXiv: 1806.01982
doi: 10.1016/j.matpur.2019.02.008. |
[17] |
S. Koike, A Beginner's Guide to the Theory of Viscosity Solutions, MSJ Memoirs, Mathematical Society of Japan, 2004. |
[18] |
J. Lewis,
Capacitory functions in convex rings, Archive for Rational Mechanics and Analysis, 66 (1977), 201-224.
doi: 10.1007/BF00250671. |
[19] |
J. Manfredi, A. Petrosyan and H. Shahgholian,
A free boundary problem for $\infty$-Laplace equation, Calculus of Variations and Partial Differential Equations, 14 (2002), 359-384.
doi: 10.1007/s005260100107. |
[20] |
Y. Peres, O. Schramm, S. Sheffield and D. Wilson,
Tug-of-war and the infinity Laplacian, Journal of the American Mathematical Society, 22 (2009), 167-210.
doi: 10.1090/S0894-0347-08-00606-1. |
[21] |
R. Rockafeller, Convex Analysis, Princeton University Press, USA, 1970.
![]() ![]() |
[22] |
O. Savin,
$C^1$ regularity for infinity harmonic functions in two dimensions, Archive for Rational Mechanics and Analysis, 176 (2005), 351-361.
doi: 10.1007/s00205-005-0355-8. |
[23] |
O. Savin, C. Wang and Y. Yu, Asymptotic behaviour of infinity harmonic functions near an isolated singularity, International Mathematical Research Notes, 6 (2008), Art. ID rnm163, 23 pp.
doi: 10.1093/imrn/rnm163. |
show all references
References:
[1] |
G. Aronsson,
Extension of functions satisfying Lipschitz conditions, Arkiv För Matematik, 6 (1967), 551-561.
doi: 10.1007/BF02591928. |
[2] |
G. Aronsson,
On the partial differential equation $u_x^2u_xx+2u_xu_yu_xy+u_y^2u_yy = 0, $, Arkiv för Matematik, 7 (1968), 397-425.
doi: 10.1007/BF02590989. |
[3] |
V. Caselles, J.-M. Morel and C. Sbert,
An axiomatic approach to image interpolation, IEEE Transactions on Image Processing, 7 (1998), 376-386.
doi: 10.1109/83.661188. |
[4] |
M. Crandall, H. Ishii and P.-L. Lions,
User's guide to viscosity solutions of second order partial differential equations, Bulletin of the American Mathematical Society, 27 (1992), 1-67.
doi: 10.1090/S0273-0979-1992-00266-5. |
[5] |
G. Crasta and I. Fragalà,
On the characterization of some classes of proximally smooth sets, ESAIM: Control, Optimisation and Calculus of Variations, 22 (2016), 710-727.
doi: 10.1051/cocv/2015022. |
[6] |
G. Crasta and I. Fragalà,
On the Dirichlet and Serrin problems for the inhomogeneous infinity Laplacian in convex domains: regularity and geometric results, Archive for Rational Mechanics and Analysis, 218 (2015), 1577-1607.
doi: 10.1007/s00205-015-0888-4. |
[7] |
L. Evans and R. Gariepy, Measure Theory and Fine Propeties of Functions, CRC Press, Boca Raton, 1992.
![]() ![]() |
[8] |
L. Evans and O. Savin,
$C^{1, \alpha}$regularity of infinite harmonic functios in two dimensions, Calculus of Variations and Partial Differential Equations, 32 (2008), 325-347.
doi: 10.1007/s00526-007-0143-4. |
[9] |
L. Evans and Ch. Smart,
Everywhere differentiability of infinity harmonic functions, Calculus of Variations and Partial Differential Equations, 42 (2011), 289-299.
doi: 10.1007/s00526-010-0388-1. |
[10] |
U. Janfalk,
Behaviour in the limit, as $p \to \infty$, of minimizers of functionals involving $p$-Dirichlet integrals, SIAM Journal on Mathematical Analysis, 27 (1996), 341-360.
doi: 10.1137/S0036141093252619. |
[11] |
R. Jensen,
Uniqueness of Lipschitz extension: Minimizing the sup norm of the gradient, Archive for Rational Mechanics and Analysis, 123 (1993), 51-74.
doi: 10.1007/BF00386368. |
[12] |
V. Julin and P. Juutinen,
A new proof for the equivalence of weak and viscosity solutions for the $p$-Laplace equation, Communications on Partial Differential Equations, 37 (2012), 934-946.
doi: 10.1080/03605302.2011.615878. |
[13] |
P. Juutinen, P. Lindqvist and J. Manfredi.,
On the equivalence of viscosity solutions and weak solutions for a quasi-linear equation, SIAM Journal on Mathematical Analysis, 33 (2001), 699-717.
doi: 10.1137/S0036141000372179. |
[14] |
P. Juutinen, P. Lindqvist and J. Manfredi.,
The infinity Laplacian: examples and observations, Papers on analysis, Rep. Univ. Jyväskylä Dep. Math. Stat. Univ. Jyväskylä, 83 (2001), 207-217.
|
[15] |
P. Juutinen, P. Lindqvist and J. Manfredi,
The $\infty$-eigenvalue problem, Archive for Rational Mechanics and Analysis, 148 (1999), 89-105.
doi: 10.1007/s002050050157. |
[16] |
H. Koch, Y. Zhang and Y. Zhou, An asymptotic sharp Sobolev regularity for planar infinity harmonic functions, Journal de Mathématiques Pures et Appliquées, 2019, arXiv: 1806.01982
doi: 10.1016/j.matpur.2019.02.008. |
[17] |
S. Koike, A Beginner's Guide to the Theory of Viscosity Solutions, MSJ Memoirs, Mathematical Society of Japan, 2004. |
[18] |
J. Lewis,
Capacitory functions in convex rings, Archive for Rational Mechanics and Analysis, 66 (1977), 201-224.
doi: 10.1007/BF00250671. |
[19] |
J. Manfredi, A. Petrosyan and H. Shahgholian,
A free boundary problem for $\infty$-Laplace equation, Calculus of Variations and Partial Differential Equations, 14 (2002), 359-384.
doi: 10.1007/s005260100107. |
[20] |
Y. Peres, O. Schramm, S. Sheffield and D. Wilson,
Tug-of-war and the infinity Laplacian, Journal of the American Mathematical Society, 22 (2009), 167-210.
doi: 10.1090/S0894-0347-08-00606-1. |
[21] |
R. Rockafeller, Convex Analysis, Princeton University Press, USA, 1970.
![]() ![]() |
[22] |
O. Savin,
$C^1$ regularity for infinity harmonic functions in two dimensions, Archive for Rational Mechanics and Analysis, 176 (2005), 351-361.
doi: 10.1007/s00205-005-0355-8. |
[23] |
O. Savin, C. Wang and Y. Yu, Asymptotic behaviour of infinity harmonic functions near an isolated singularity, International Mathematical Research Notes, 6 (2008), Art. ID rnm163, 23 pp.
doi: 10.1093/imrn/rnm163. |
[1] |
Gang Li, Fen Gu, Feida Jiang. Positive viscosity solutions of a third degree homogeneous parabolic infinity Laplace equation. Communications on Pure and Applied Analysis, 2020, 19 (3) : 1449-1462. doi: 10.3934/cpaa.2020071 |
[2] |
Yinbin Deng, Yi Li, Wei Shuai. Existence of solutions for a class of p-Laplacian type equation with critical growth and potential vanishing at infinity. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 683-699. doi: 10.3934/dcds.2016.36.683 |
[3] |
Giovanna Cerami, Riccardo Molle. On some Schrödinger equations with non regular potential at infinity. Discrete and Continuous Dynamical Systems, 2010, 28 (2) : 827-844. doi: 10.3934/dcds.2010.28.827 |
[4] |
Iryna Pankratova, Andrey Piatnitski. On the behaviour at infinity of solutions to stationary convection-diffusion equation in a cylinder. Discrete and Continuous Dynamical Systems - B, 2009, 11 (4) : 935-970. doi: 10.3934/dcdsb.2009.11.935 |
[5] |
Fang Liu. An inhomogeneous evolution equation involving the normalized infinity Laplacian with a transport term. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2395-2421. doi: 10.3934/cpaa.2018114 |
[6] |
Mohameden Ahmedou, Mohamed Ben Ayed, Marcello Lucia. On a resonant mean field type equation: A "critical point at Infinity" approach. Discrete and Continuous Dynamical Systems, 2017, 37 (4) : 1789-1818. doi: 10.3934/dcds.2017075 |
[7] |
José Caicedo, Alfonso Castro, Arturo Sanjuán. Bifurcation at infinity for a semilinear wave equation with non-monotone nonlinearity. Discrete and Continuous Dynamical Systems, 2017, 37 (4) : 1857-1865. doi: 10.3934/dcds.2017078 |
[8] |
Goro Akagi, Kazumasa Suzuki. On a certain degenerate parabolic equation associated with the infinity-laplacian. Conference Publications, 2007, 2007 (Special) : 18-27. doi: 10.3934/proc.2007.2007.18 |
[9] |
Luis Barreira, Claudia Valls. Topological conjugacies and behavior at infinity. Communications on Pure and Applied Analysis, 2014, 13 (2) : 687-701. doi: 10.3934/cpaa.2014.13.687 |
[10] |
Yinbin Deng, Wei Shuai. Positive solutions for quasilinear Schrödinger equations with critical growth and potential vanishing at infinity. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2273-2287. doi: 10.3934/cpaa.2014.13.2273 |
[11] |
Victor S. Kozyakin, Alexander M. Krasnosel’skii, Dmitrii I. Rachinskii. Arnold tongues for bifurcation from infinity. Discrete and Continuous Dynamical Systems - S, 2008, 1 (1) : 107-116. doi: 10.3934/dcdss.2008.1.107 |
[12] |
Victor Kozyakin, Alexander M. Krasnosel’skii, Dmitrii Rachinskii. Asymptotics of the Arnold tongues in problems at infinity. Discrete and Continuous Dynamical Systems, 2008, 20 (4) : 989-1011. doi: 10.3934/dcds.2008.20.989 |
[13] |
Shota Sato. Blow-up at space infinity of a solution with a moving singularity for a semilinear parabolic equation. Communications on Pure and Applied Analysis, 2011, 10 (4) : 1225-1237. doi: 10.3934/cpaa.2011.10.1225 |
[14] |
Alexander Krasnosel'skii, Jean Mawhin. The index at infinity for some vector fields with oscillating nonlinearities. Discrete and Continuous Dynamical Systems, 2000, 6 (1) : 165-174. doi: 10.3934/dcds.2000.6.165 |
[15] |
Michel Chipot, Aleksandar Mojsic, Prosenjit Roy. On some variational problems set on domains tending to infinity. Discrete and Continuous Dynamical Systems, 2016, 36 (7) : 3603-3621. doi: 10.3934/dcds.2016.36.3603 |
[16] |
Guillaume James, Dmitry Pelinovsky. Breather continuation from infinity in nonlinear oscillator chains. Discrete and Continuous Dynamical Systems, 2012, 32 (5) : 1775-1799. doi: 10.3934/dcds.2012.32.1775 |
[17] |
Yukihiro Seki. A remark on blow-up at space infinity. Conference Publications, 2009, 2009 (Special) : 691-696. doi: 10.3934/proc.2009.2009.691 |
[18] |
Francesco Della Pietra, Ireneo Peral. Breaking of resonance for elliptic problems with strong degeneration at infinity. Communications on Pure and Applied Analysis, 2011, 10 (2) : 593-612. doi: 10.3934/cpaa.2011.10.593 |
[19] |
Begoña Alarcón, Víctor Guíñez, Carlos Gutierrez. Hopf bifurcation at infinity for planar vector fields. Discrete and Continuous Dynamical Systems, 2007, 17 (2) : 247-258. doi: 10.3934/dcds.2007.17.247 |
[20] |
Rémi Goudey. A periodic homogenization problem with defects rare at infinity. Networks and Heterogeneous Media, 2022 doi: 10.3934/nhm.2022014 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]