We consider certain solutions of the Infinity-Laplace Equation in planar convex rings. Their ascending streamlines are unique while the descending ones may bifurcate. We prove that bifurcation occurs in the generic situation and as a consequence, the solutions cannot have Lipschitz continuous gradients.
Citation: |
[1] | G. Aronsson, Extension of functions satisfying Lipschitz conditions, Arkiv För Matematik, 6 (1967), 551-561. doi: 10.1007/BF02591928. |
[2] | G. Aronsson, On the partial differential equation $u_x^2u_xx+2u_xu_yu_xy+u_y^2u_yy = 0, $, Arkiv för Matematik, 7 (1968), 397-425. doi: 10.1007/BF02590989. |
[3] | V. Caselles, J.-M. Morel and C. Sbert, An axiomatic approach to image interpolation, IEEE Transactions on Image Processing, 7 (1998), 376-386. doi: 10.1109/83.661188. |
[4] | M. Crandall, H. Ishii and P.-L. Lions, User's guide to viscosity solutions of second order partial differential equations, Bulletin of the American Mathematical Society, 27 (1992), 1-67. doi: 10.1090/S0273-0979-1992-00266-5. |
[5] | G. Crasta and I. Fragalà, On the characterization of some classes of proximally smooth sets, ESAIM: Control, Optimisation and Calculus of Variations, 22 (2016), 710-727. doi: 10.1051/cocv/2015022. |
[6] | G. Crasta and I. Fragalà, On the Dirichlet and Serrin problems for the inhomogeneous infinity Laplacian in convex domains: regularity and geometric results, Archive for Rational Mechanics and Analysis, 218 (2015), 1577-1607. doi: 10.1007/s00205-015-0888-4. |
[7] | L. Evans and R. Gariepy, Measure Theory and Fine Propeties of Functions, CRC Press, Boca Raton, 1992. |
[8] | L. Evans and O. Savin, $C^{1, \alpha}$regularity of infinite harmonic functios in two dimensions, Calculus of Variations and Partial Differential Equations, 32 (2008), 325-347. doi: 10.1007/s00526-007-0143-4. |
[9] | L. Evans and Ch. Smart, Everywhere differentiability of infinity harmonic functions, Calculus of Variations and Partial Differential Equations, 42 (2011), 289-299. doi: 10.1007/s00526-010-0388-1. |
[10] | U. Janfalk, Behaviour in the limit, as $p \to \infty$, of minimizers of functionals involving $p$-Dirichlet integrals, SIAM Journal on Mathematical Analysis, 27 (1996), 341-360. doi: 10.1137/S0036141093252619. |
[11] | R. Jensen, Uniqueness of Lipschitz extension: Minimizing the sup norm of the gradient, Archive for Rational Mechanics and Analysis, 123 (1993), 51-74. doi: 10.1007/BF00386368. |
[12] | V. Julin and P. Juutinen, A new proof for the equivalence of weak and viscosity solutions for the $p$-Laplace equation, Communications on Partial Differential Equations, 37 (2012), 934-946. doi: 10.1080/03605302.2011.615878. |
[13] | P. Juutinen, P. Lindqvist and J. Manfredi., On the equivalence of viscosity solutions and weak solutions for a quasi-linear equation, SIAM Journal on Mathematical Analysis, 33 (2001), 699-717. doi: 10.1137/S0036141000372179. |
[14] | P. Juutinen, P. Lindqvist and J. Manfredi., The infinity Laplacian: examples and observations, Papers on analysis, Rep. Univ. Jyväskylä Dep. Math. Stat. Univ. Jyväskylä, 83 (2001), 207-217. |
[15] | P. Juutinen, P. Lindqvist and J. Manfredi, The $\infty$-eigenvalue problem, Archive for Rational Mechanics and Analysis, 148 (1999), 89-105. doi: 10.1007/s002050050157. |
[16] | H. Koch, Y. Zhang and Y. Zhou, An asymptotic sharp Sobolev regularity for planar infinity harmonic functions, Journal de Mathématiques Pures et Appliquées, 2019, arXiv: 1806.01982 doi: 10.1016/j.matpur.2019.02.008. |
[17] | S. Koike, A Beginner's Guide to the Theory of Viscosity Solutions, MSJ Memoirs, Mathematical Society of Japan, 2004. |
[18] | J. Lewis, Capacitory functions in convex rings, Archive for Rational Mechanics and Analysis, 66 (1977), 201-224. doi: 10.1007/BF00250671. |
[19] | J. Manfredi, A. Petrosyan and H. Shahgholian, A free boundary problem for $\infty$-Laplace equation, Calculus of Variations and Partial Differential Equations, 14 (2002), 359-384. doi: 10.1007/s005260100107. |
[20] | Y. Peres, O. Schramm, S. Sheffield and D. Wilson, Tug-of-war and the infinity Laplacian, Journal of the American Mathematical Society, 22 (2009), 167-210. doi: 10.1090/S0894-0347-08-00606-1. |
[21] | R. Rockafeller, Convex Analysis, Princeton University Press, USA, 1970. |
[22] | O. Savin, $C^1$ regularity for infinity harmonic functions in two dimensions, Archive for Rational Mechanics and Analysis, 176 (2005), 351-361. doi: 10.1007/s00205-005-0355-8. |
[23] | O. Savin, C. Wang and Y. Yu, Asymptotic behaviour of infinity harmonic functions near an isolated singularity, International Mathematical Research Notes, 6 (2008), Art. ID rnm163, 23 pp. doi: 10.1093/imrn/rnm163. |
The streamlines of